【題目】如圖,已知多面體的底面
是邊長(zhǎng)為
的菱形,
底面
,
,且
.
(1)證明:平面平面
;
(2)若直線與平面
所成的角為
,求二面角
的余弦值.
【答案】(1)見(jiàn)解析;(2)
【解析】試題分析:(1)連接 ,交
于點(diǎn)
,設(shè)
中點(diǎn)為
,連接
,
,先根據(jù)三角形中位線定理及平行四邊形的性質(zhì)可得
,再證明
平面
,從而可得
平面
,進(jìn)而可得平面
平面
;(2)以
為原點(diǎn),
,
,
分別為
軸,建立空間直角坐標(biāo)系
,分別求出平面
與平面
的一個(gè)法向量,根據(jù)空間向量夾角余弦公式,可得結(jié)果
試題解析:(1)證明:連接,交
于點(diǎn)
,設(shè)
中點(diǎn)為
,連接
,
.
因?yàn)?/span>,
分別為
,
的中點(diǎn),
所以,且
,
因?yàn)?/span>,且
,
所以,且
.
所以四邊形為平行四邊形,所以
,即
.
因?yàn)?/span>平面
,
平面
,所以
.
因?yàn)?/span>是菱形,所以
.
因?yàn)?/span>,所以
平面
.
因?yàn)?/span>,所以
平面
.
因?yàn)?/span>平面
,所以平面
平面
.
(2)解法:因?yàn)橹本與平面
所成角為
,
所以,所以
.
所以
,故△
為等邊三角形.
設(shè)的中點(diǎn)為
,連接
,則
.
以為原點(diǎn),
,
,
分別為
軸,建立空間直角坐標(biāo)系
(如圖).
則,
,
,
,
,
,
.
設(shè)平面的法向量為
,
則即
則
所以
.
設(shè)平面的法向量為
,
則即
令
則
所以
.
設(shè)二面角的大小為
,由于
為鈍角,
所以.
所以二面角的余弦值為
.
【方法點(diǎn)晴】本題主要考查線面垂直及面面垂直的判定定理以及利用空間向量求二面角,屬于難題. 空間向量解答立體幾何問(wèn)題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫(xiě)出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù),據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
A.0.40 B.0.30 C.0.35 D.0.25
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知定圓,定直線
,過(guò)
的一條動(dòng)直線
與直線相交于
,與圓
相交于
,
兩點(diǎn),
是
中點(diǎn).
(Ⅰ)當(dāng)與
垂直時(shí),求證:
過(guò)圓心
;
(Ⅱ)當(dāng)時(shí),求直線
的方程;
(Ⅲ)設(shè),試問(wèn)
是否為定值,若為定值,請(qǐng)求出
的值;若不為定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,M,N分別為
的中點(diǎn).
(1)證明:直線MN//平面CAB1;
(2)若四邊形ABB1A1是菱形,且,
,求平面
和平面
所成的角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】讀下列各題所給的程序,依據(jù)程序畫(huà)出程序框圖,并說(shuō)明其功能:
(1)INPUT “x=”;x
IF x>1 OR x<-1 THEN
y=1
ELSE y=0
END IF
PRINE y
END
(2)INPUT “輸入三個(gè)正數(shù)a,b,c=”;a,b,c
IF a+b>c AND a+c>b AND b+c>a THEN
p=(a+b+c)/2
S=SQR(p*(p-a)*(p-b)*(p-c))
PRINT “三角形的面積S=”S
ELSE
PRINT “構(gòu)不成三角形”
END IF
END
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)當(dāng)時(shí),求不等式
的解集;
(2)若函數(shù)的值域?yàn)?/span>
,且
,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在海島A上有一座海拔1千米的山,山頂設(shè)有一個(gè)觀察站P,上午11時(shí),測(cè)得一輪船在島北偏東30°,俯角為30°的B處,到11時(shí)10分又測(cè)得該船在島北偏西60°,俯角為60°的C處.
(1)求船的航行速度是每小時(shí)多少千米?
(2)又經(jīng)過(guò)一段時(shí)間后,船到達(dá)海島的正西方向的D處,問(wèn)此時(shí)船距島A有多遠(yuǎn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知常數(shù),向量
,
,經(jīng)過(guò)點(diǎn)
,以
為方向向量的直線與經(jīng)過(guò)點(diǎn)
,以
為方向向量的直線交于點(diǎn)
,其中
.
()求點(diǎn)
的軌跡方程,并指出軌跡
.
()若點(diǎn)
,當(dāng)
時(shí),
為軌跡
上任意一點(diǎn),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】假定下述數(shù)據(jù)是甲、乙兩個(gè)供貨商的交貨天數(shù):
甲:10 9 10 10 11 11 9 11 10 10
乙:8 10 14 7 10 11 10 8 15 12
估計(jì)兩個(gè)供貨商的交貨情況,并問(wèn)哪個(gè)供貨商交貨時(shí)間短一些,哪個(gè)供貨商交貨時(shí)間較具一致性與可靠性.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com