【題目】已知函數(shù)f(x)=的值域是[0,+∞),則實(shí)數(shù)m的取值范圍是
【答案】[0,1]∪[9,+∞)
【解析】解:當(dāng)m=0時,f(x)= , 值域是[0,+∞),滿足條件;
當(dāng)m<0時,f(x)的值域不會是[0,+∞),不滿足條件;
當(dāng)m>0時,f(x)的被開方數(shù)是二次函數(shù),△≥0,
即(m﹣3)2﹣4m≥0,∴m≤1或 m≥9.
綜上,0≤m≤1或 m≥9,
∴實(shí)數(shù)m的取值范圍是:[0,1]∪[9,+∞),
所以答案是:[0,1]∪[9,+∞).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的值域的相關(guān)知識,掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的頂點(diǎn)
,
邊上的中線
所在直線方程為
,
邊上的高
所在直線方程為
.
(1)求點(diǎn)的坐標(biāo);
(2)求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線焦點(diǎn)
且傾斜角的
直線
與拋物線
交于點(diǎn)
的面積為
.
(I)求拋物線的方程;
(II)設(shè)是直線
上的一個動點(diǎn),過
作拋物線
的切線,切點(diǎn)分別為
直線
與直線
軸的交點(diǎn)分別為
點(diǎn)
是以
為圓心
為半徑的圓上任意兩點(diǎn),求
最大時點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和為
,且
.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列
前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a<1,集合A={x|x<a﹣2或x>﹣a},集合B={x|cos(xπ)=1},全集U=R.
(1)當(dāng)a=0時,求(UA)∩B;
(2)若(UA)∩B恰有2個元素,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD的頂點(diǎn)P在底面ABCD上的投影恰好是A,其正視圖與側(cè)視圖都是腰長為a的等腰直角三角形.則在四棱錐P﹣ABCD的任意兩個頂點(diǎn)的連線中,互相垂直的異面直線共有 對.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為
,左頂點(diǎn)為
(1)求橢圓的方程;
(2)過點(diǎn)作兩條相互垂直的直線分別與橢圓
交于(不同于點(diǎn)
的)
兩點(diǎn).試判斷直線
與
軸的交點(diǎn)是否為定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2|x|﹣1.
(1)證明函數(shù)f(x)是偶函數(shù);
(2)在如圖所示的平面直角坐標(biāo)系中作出函數(shù)f(x)的圖象.并根據(jù)圖象寫出函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)當(dāng)x∈[﹣2,4]時的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=,數(shù)列{an}滿足a1=1,an+1=f(an)(n∈N*).
(1)證明數(shù)列{}是等差數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(2)記Sn=a1a2+a2a3+…+anan+1,求Sn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com