【題目】關(guān)于函數(shù),有以下三個(gè)結(jié)論:
①函數(shù)恒有兩個(gè)零點(diǎn),且兩個(gè)零點(diǎn)之積為;
②函數(shù)的極值點(diǎn)不可能是;
③函數(shù)必有最小值.
其中正確結(jié)論的個(gè)數(shù)有( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
【答案】D
【解析】
把函數(shù)的零點(diǎn)轉(zhuǎn)化為函數(shù)
的零點(diǎn),即可判斷①;求得
后代入
,根據(jù)
是否為0即可判斷②;設(shè)
的兩個(gè)實(shí)數(shù)根為
,
且
,結(jié)合①可得當(dāng)
時(shí),
,再證明
即可判斷③;即可得解.
由題意函數(shù)的零點(diǎn)即為函數(shù)
的零點(diǎn),
令,則
,所以方程必有兩個(gè)不等實(shí)根
,
,設(shè)
,
由韋達(dá)定理可得,故①正確;
,
當(dāng)時(shí),
,故
不可能是函數(shù)
的極值點(diǎn),故②正確;
令即
,
,
設(shè)的兩個(gè)實(shí)數(shù)根為
,
且
,
則當(dāng),
時(shí),
,函數(shù)
單調(diào)遞增,
當(dāng)時(shí),
,函數(shù)
單調(diào)遞減,所以
為函數(shù)極小值;
由①知,當(dāng)時(shí),函數(shù)
,所以當(dāng)
時(shí),
,
又 ,所以
,所以
,
所以為函數(shù)的最小值,故③正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在
上恒成立,求
的取值范圍,并證明:對(duì)任意的
,都有
(2)設(shè).討論方程
實(shí)數(shù)根的個(gè)數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人各進(jìn)行次射擊,甲每次擊中目標(biāo)的概率為
,乙每次擊中目標(biāo)的概率
,
(Ⅰ)記甲擊中目標(biāo)的次數(shù)為,求
的概率分布及數(shù)學(xué)期望;
(Ⅱ)求甲恰好比乙多擊中目標(biāo)次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知條件P:①是奇函數(shù);②值域?yàn)?/span>R;③函數(shù)圖象經(jīng)過(guò)第四象限。則下列函數(shù)中滿足條件Р的是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
是正方形,
底面
,
,點(diǎn)E是
的中點(diǎn),點(diǎn)F在邊
上移動(dòng).
(Ⅰ)若F為中點(diǎn),求證:
平面
;
(Ⅱ)求證:;
(Ⅲ)若二面角的余弦值等于
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù)
⑴當(dāng)時(shí),求函數(shù)
的表達(dá)式;
⑵若,函數(shù)
在
上的最小值是2 ,求
的值;
⑶在⑵的條件下,求直線與函數(shù)
的圖象所圍成圖形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)分別是
,
,
,
是其左右頂點(diǎn),點(diǎn)
是橢圓
上任一點(diǎn),且
的周長(zhǎng)為6,若
面積的最大值為
.
(1)求橢圓的方程;
(2)若過(guò)點(diǎn)且斜率不為0的直線交橢圓
于
,
兩個(gè)不同點(diǎn),證明:直線
與
的交點(diǎn)在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)拋擲兩枚骰子,記事件為“朝上的2個(gè)數(shù)之和為偶數(shù)”,事件
為“朝上的2個(gè)數(shù)均為偶數(shù)”,則
( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線將矩形紙
分為兩個(gè)直角梯形
和
,將梯形
沿邊
翻折,如圖2,在翻折的過(guò)程中(平面
和平面
不重合),下面說(shuō)法正確的是
圖1 圖2
A.存在某一位置,使得平面
B.存在某一位置,使得平面
C.在翻折的過(guò)程中,平面
恒成立
D.在翻折的過(guò)程中,平面
恒成立
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com