(本小題滿分13分).某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計要求容器的體積為立方米,且
.假設(shè)該容器的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為
千元,設(shè)該容器的建造費用為
千元.
(Ⅰ)寫出關(guān)于
的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
(Ⅱ)求該容器的建造費用最小時的.
(I);
(II)是函數(shù)y的極小值點,也是最小值點。
(2)當(dāng)時,建造費用最小時
當(dāng)
時,建造費用最小時
。
解析試題分析:(I)設(shè)容器的容積為V,
由題意知
故
由于
因此…………………………………………………………………….3分
所以建造費用
因此………………………………………..5分
(II)由(I)得
由于
當(dāng)
令
所以………………………………….7分
(1)當(dāng)時,
所以是函數(shù)y的極小值點,也是最小值點!.10分
(2)當(dāng)即
時,
當(dāng)函數(shù)單調(diào)遞減,
所以r=2是函數(shù)y的最小值點,
綜上所述,當(dāng)時,建造費用最小時
當(dāng)時,建造費用最小時
………………13分
考點:本題主要考查導(dǎo)數(shù)在實際問題中的應(yīng)用,利用導(dǎo)數(shù)求函數(shù)的最值,幾何體特征及體積計算。
點評:高考題,構(gòu)建函數(shù)關(guān)系、準(zhǔn)確求導(dǎo)數(shù)是解題的關(guān)鍵。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)的圖象過點(1,13),圖像關(guān)于直線
對稱。
(1)求的解析式。
(2)已知,
,
① 若函數(shù)的零點有三個,求實數(shù)
的取值范圍;
②求函數(shù)在[
,2]上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分分)
若函數(shù)在定義域
內(nèi)某區(qū)間
上是增函數(shù),而
在
上是減函數(shù),
則稱在
上是“弱增函數(shù)”
(1)請分別判斷=
,
在
是否是“弱增函數(shù)”,
并簡要說明理由;
(2)證明函數(shù)(
是常數(shù)且
)在
上是“弱增函數(shù)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)(
),
(Ⅰ)求函數(shù)的最小值;
(Ⅱ)已知,
:關(guān)于
的不等式
對任意
恒成立;
:函數(shù)
是增函數(shù).若“
或
”為真,“
且
”為假,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知是定義在
上的奇函數(shù),當(dāng)
時,
。
(1)求及
的值;
(2)求的解析式并畫出簡圖;
(3)寫出的單調(diào)區(qū)間(不用證明)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)
如圖,在半徑為的
圓形(
為圓心)鋁皮上截取一塊矩形材料
,其中點
在圓上,點
、
在兩半徑上,現(xiàn)將此矩形鋁皮
卷成一個以
為母線的圓柱形罐子的側(cè)面(不計剪裁和拼接損耗),設(shè)矩形的邊長
,圓柱的體積為
.
(1)寫出體積關(guān)于
的函數(shù)關(guān)系式,并指出定義域;
(2)當(dāng)為何值時,才能使做出的圓柱形罐子體積
最大?最大體積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在上的函數(shù)
,如果滿足:對任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的上界.
(1)判斷函數(shù)是否是有界函數(shù),請寫出詳細(xì)判斷過程;
(2)試證明:設(shè),若
在
上分別以
為上界,
求證:函數(shù)在
上以
為上界;
(3)若函數(shù)在
上是以3為上界的有界函數(shù),
求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
某工廠修建一個長方體無蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的 造價為150元,池壁每平方米的造價為120元.設(shè)池底長方形長為米.
(1)求底面積,并用含的表達(dá)式表示池壁面積;
(2)怎樣設(shè)計水池能使總造價最低?最低造價是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com