(本題滿分18分)第(1)小題滿分4分,第(2)小題滿分8分,第(3)小題滿分6分。
定義:由橢圓的兩個焦點(diǎn)和短軸的一個頂點(diǎn)組成的三角形稱為該橢圓的“特征三角形”。如果兩個橢圓的“特征三角形”是相似的,則稱這兩個橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比。已知橢圓。
若橢圓,判斷
與
是否相似?如果相似,求出
與
的相似比;如果不相似,請說明理由;
寫出與橢圓
相似且短半軸長為
的橢圓
的方程;若在橢圓
上存在兩點(diǎn)
、
關(guān)于直線
對稱,求實(shí)數(shù)
的取值范圍?
如圖:直線與兩個“相似橢圓”
和
分別交于點(diǎn)
和點(diǎn)
,證明:
解:(1)橢圓與
相似。-------------------2分
因?yàn)闄E圓的特征三角形是腰長為4,底邊長為
的等腰三角形,而橢圓
的特征三角形是腰長為2,底邊長為
的等腰三角形,因此兩個等腰三角形相似,且相似比為
-------------------4分
(2)橢圓的方程為:
-------------------6分
設(shè),點(diǎn)
,
中點(diǎn)為
,
則,所以
-------------------8分
則 -------------------9分
因?yàn)橹悬c(diǎn)在直線上,所以有
,
-------------------10分
即直線的方程為:
,
由題意可知,直線與橢圓
有兩個不同的交點(diǎn),
即方程有兩個不同的實(shí)數(shù)解,
所以,即
-------------------12分
(3)證明:
①直線與
軸垂直時,易得線段AB與CD的中點(diǎn)重合,所以
;-------------------14分
②直線不與
軸垂直時,設(shè)直線
的方程為:
,
,
線段AB的中點(diǎn),
-------------------15分
線段AB的中點(diǎn)為
-------------------16分
同理可得線段CD的中點(diǎn)為,-------------------17分
即線段AB與CD的中點(diǎn)重合,所以-------------------18分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
在平行四邊形中,已知過點(diǎn)
的直線與線段
分別相交于點(diǎn)
。若
。
(1)求證:與
的關(guān)系為
;
(2)設(shè),定義函數(shù)
,點(diǎn)列
在函數(shù)
的圖像上,且數(shù)列
是以首項(xiàng)為1,公比為
的等比數(shù)列,
為原點(diǎn),令
,是否存在點(diǎn)
,使得
?若存在,請求出
點(diǎn)坐標(biāo);若不存在,請說明理由。
(3)設(shè)函數(shù)為
上偶函數(shù),當(dāng)
時
,又函數(shù)
圖象關(guān)于直線
對稱, 當(dāng)方程
在
上有兩個不同的實(shí)數(shù)解時,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆上海市崇明中學(xué)高三第一學(xué)期期中考試試題數(shù)學(xué) 題型:解答題
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
對于數(shù)列,如果存在一個正整數(shù)
,使得對任意的
(
)都有
成立,那么就把這樣一類數(shù)列
稱作周期為
的周期數(shù)列,
的最小值稱作數(shù)列
的最小正周期,以下簡稱周期。例如當(dāng)
時
是周期為
的周期數(shù)列,當(dāng)
時
是周期為
的周期數(shù)列。
(1)設(shè)數(shù)列滿足
(
),
(
不同時為0),且數(shù)列
是周期為
的周期數(shù)列,求常數(shù)
的值;
(2)設(shè)數(shù)列的前
項(xiàng)和為
,且
.
①若,試判斷數(shù)列
是否為周期數(shù)列,并說明理由;
②若,試判斷數(shù)列
是否為周期數(shù)列,并說明理由;
(3)設(shè)數(shù)列滿足
(
),
,
,
,數(shù)列
的前
項(xiàng)和為
,試問是否存在
,使對任意的
都有
成立,若存在,求出
的取值范圍;不存在, 說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高三第一學(xué)期期中考試試題數(shù)學(xué) 題型:解答題
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
對于數(shù)列,如果存在一個正整數(shù)
,使得對任意的
(
)都有
成立,那么就把這樣一類數(shù)列
稱作周期為
的周期數(shù)列,
的最小值稱作數(shù)列
的最小正周期,以下簡稱周期。例如當(dāng)
時
是周期為
的周期數(shù)列,當(dāng)
時
是周期為
的周期數(shù)列。
(1)設(shè)數(shù)列滿足
(
),
(
不同時為0),且數(shù)列
是周期為
的周期數(shù)列,求常數(shù)
的值;
(2)設(shè)數(shù)列的前
項(xiàng)和為
,且
.
①若,試判斷數(shù)列
是否為周期數(shù)列,并說明理由;
②若,試判斷數(shù)列
是否為周期數(shù)列,并說明理由;
(3)設(shè)數(shù)列滿足
(
),
,
,
,數(shù)列
的前
項(xiàng)和為
,試問是否存在
,使對任意的
都有
成立,若存在,求出
的取值范圍;不存在,
說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市十三校高三上學(xué)期第一次聯(lián)考試題文科數(shù)學(xué) 題型:解答題
(本題滿分18分,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分)
已知函數(shù),其中
.
(1)當(dāng)時,設(shè)
,
,求
的解析式及定義域;
(2)當(dāng),
時,求
的最小值;
(3)設(shè),當(dāng)
時,
對任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分18分;第(1)小題5分,第(2)小題5分,第(3)小題8分)
設(shè)數(shù)列是等差數(shù)列,且公差為
,若數(shù)列
中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“封閉數(shù)列”.
(1)若,求證:該數(shù)列是“封閉數(shù)列”;
(2)試判斷數(shù)列是否是“封閉數(shù)列”,為什么?
(3)設(shè)是數(shù)列
的前
項(xiàng)和,若公差
,試問:是否存在這樣的“封閉數(shù)列”,使
;若存在,求
的通項(xiàng)公式,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com