【題目】已知函數(shù)為奇函數(shù),
,其中
.
(1)若函數(shù)的圖像過點
,求實數(shù)
和
的值;
(2)若,試判斷函數(shù)
在
上的單調(diào)性并證明;
(3)設(shè)函數(shù),若對每一個不小于3的實數(shù)
,都恰有一個小于3的實數(shù)
,使得
成立,求實數(shù)
的取值范圍.
【答案】(1) ; (2)
在
上單調(diào)遞增;
(3)
【解析】
(1)由奇函數(shù)可得,再代入
即可.
(2)設(shè)再計算
的正負即可判斷單調(diào)性.
(3)由題意可分,
與
三種情況進行討論再根據(jù)
與
的值域關(guān)系進行不等式求解.
(1)因為為奇函數(shù),故
,又函數(shù)
的圖像過點
故
.即
.
(2)由題,,
當(dāng)時,
,設(shè)
,
則
因為,故
,
,
,
故.所以
故在
上單調(diào)遞增.
(3)當(dāng)時,
當(dāng)時,
1.當(dāng)時,
,
,又
,
不滿足條件,
2.當(dāng)時,
,
,
又,
,
由題意恒成立,故
滿足條件.
3.當(dāng)時,
,
,
,
,
由題意有,此時
,即
令函數(shù),易得
為減函數(shù)且
.
則解可得
.此時
綜上
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:
試銷單價x(元) | 4 | 5 | 6 | 7 | 8 |
產(chǎn)品銷量y(件) | q | 85 | 82 | 80 | 75 |
已知
(1)求出q的值;
(2)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價x(元)的線性回歸方程
;
(3)假設(shè)試銷單價為10元,試估計該產(chǎn)品的銷量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出噸該商品可獲利潤
萬元,未售出的商品,每
噸虧損
萬元.根據(jù)往年的銷售經(jīng)驗,得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了
噸該商品.現(xiàn)以
(單位:噸,
)表示下一個銷售季度的市場需求量,
(單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.
(1)將表示為
的函數(shù),求出該函數(shù)表達式;
(2)根據(jù)直方圖估計利潤不少于57萬元的概率;
(3)根據(jù)頻率分布直方圖,估計一個銷售季度內(nèi)市場需求量的平均數(shù)與中位數(shù)的大。ūA舻叫(shù)點后一位).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)對定義域內(nèi)的每一個值
,在其定義域內(nèi)都存在唯一的
,使
成立,則該函數(shù)為“依附函數(shù)”.
(1)判斷函數(shù)是否為“依附函數(shù)”,并說明理由;
(2)若函數(shù)在定義域
上“依附函數(shù)”,求
的取值范圍;
(3)已知函數(shù)在定義域
上為“依附函數(shù)”.若存在實數(shù)
,使得對任意的
,不等式
都成立,求實數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】孝感市旅游局為了了解雙峰山景點在大眾中的熟知度,從年齡在15~65歲的人群中隨機抽取人進行問卷調(diào)查,把這
人按年齡分成5組:第一組
,第二組
,第三組
,第四組
,第五組
,得到的樣本的頻率分布直方圖如圖:
調(diào)查問題是“雙峰山國家森林公園是幾級旅游景點?”每組中回答正確的人數(shù)及回答正確的人數(shù)占本組的頻率的統(tǒng)計結(jié)果如下表.
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人;
(3)在(2)抽取的6人中隨機抽取2人,求所抽取的兩人來自不同年齡組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的焦點是橢圓
:
(
)的頂點,且橢圓與雙曲線的離心率互為倒數(shù).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)動點,
在橢圓
上,且
,記直線
在
軸上的截距為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了培養(yǎng)學(xué)生的安全意識,某中學(xué)舉行了一次“安全自救”的知識競賽活動,共有800名學(xué)生參加了這次競賽.為了解本次競賽的成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,得到如下的頻率分布表,請你根據(jù)頻率分布表解答下列問題:
序號(i) | 分組(分數(shù)) | 組中值(Gi) | 頻數(shù)(人數(shù)) | 頻率(fi) |
1 | 65 | ① | 0.10 | |
2 | 75 | 20 | ② | |
3 | 85 | ③ | 0.20 | |
4 | 95 | ④ | ⑤ | |
合計 | 50 | 1.00 |
(1)求出頻率分布表中①②③④⑤處的值;
(2)為鼓勵更多的學(xué)生了解“安全自救”知識,成績不低于85分的學(xué)生能獲獎,請估計在參加的800名學(xué)生中大約有多少名學(xué)生能獲獎;
(3)求這800名學(xué)生的平均分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某行業(yè)主管部門為了解本行業(yè)中小企業(yè)的生產(chǎn)情況,隨機調(diào)查了100個企業(yè),得到這些企業(yè)第一季度相對于前一年第一季度產(chǎn)值增長率y的頻數(shù)分布表.
| |||||
企業(yè)數(shù) | 2 | 24 | 53 | 14 | 7 |
(1)分別估計這類企業(yè)中產(chǎn)值增長率不低于40%的企業(yè)比例、產(chǎn)值負增長的企業(yè)比例;
(2)求這類企業(yè)產(chǎn)值增長率的平均數(shù)與標(biāo)準(zhǔn)差的估計值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).(精確到0.01)
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若實數(shù)滿足
,稱
為函數(shù)
的不動點.有下面三個命題:(1)若
是二次函數(shù),且沒有不動點,則函數(shù)
也沒有不動點;(2)若
是二次函數(shù),則函數(shù)
可能有
個不動點;(3)若
的不動點的個數(shù)是
,則
的不動點的個數(shù)不可能是
;它們中所有真命題的序號是________________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com