【題目】為抗擊“新冠肺炎”,全國各地“停課不停學”,各學校都開展了在線課堂,組織學生在線學習,并自主安排時間完成相應作業(yè)為了解學生的學習效率,某在線教育平臺統(tǒng)計了部分高三備考學生每天完成數(shù)學作業(yè)所需的平均時間,繪制了如圖所示的頻率分布直方圖.
(1)如果學生在完成在線課程后每天平均自主學習時間(完成各科作業(yè)及其他自主學習)為小時,估計高三備考學生每天完成數(shù)學作業(yè)的平均時間占自主學習時間的比例(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表)(結果精確到
);
(2)以統(tǒng)計的頻率作為概率,估計一個高三備考學生每天完成數(shù)學作業(yè)的平均時間不超過分鐘的概率.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(
),
是
的導數(shù).
(1)當時,令
,
為
的導數(shù).證明:
在區(qū)間
存在唯一的極小值點;
(2)已知函數(shù)在
上單調遞減,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,高爾頓板是英國生物統(tǒng)計學家高爾頓設計的用來研究隨機現(xiàn)象的模型,它是在一塊豎起的木板上釘上一排排互相平行,水平間隔相等的圓柱形鐵釘,并且每一排釘子數(shù)目都比上一排多一個,一排中各個釘子恰好對準上面一排兩相鄰鐵釘?shù)恼醒,從入口處放入一個直徑略小于兩顆釘子間隔的小球,當小球從兩釘之間的間隙下落時,由于碰到下一排鐵釘,它將以相等的可能性向左或向右落下,接著小球再通過兩釘?shù)拈g隙,又碰到下一排鐵釘,如此繼續(xù)下去,在最底層的5個出口處各放置一個容器接住小球,那么,小球落入1號容器的概率是______,若取4個小球進行試驗,設其中落入4號容器的小球個數(shù)為x,則x的數(shù)學期望是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,在新高考改革中,打破文理分科的“”模式初露端倪,其中語、數(shù)、外三門課為必考科目,剩下三門為選考科目選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分,假定
省規(guī)定:選考科目按考生成績從高到低排列,按照占總體
、
、
、
分別賦分
分、
分、
分、
分,為了讓學生們體驗“賦分制”計算成績的方法,
省某高中高一(
)班(共
人)舉行了以此摸底考試(選考科目全考,單料全班排名),知這次摸底考試中的物理成績(滿分
分)頻率分布直方圖,化學成績(滿分
分)莖葉圖如圖所示,小明同學在這次考試中物理
分,化學
多分.
(1)采用賦分制后,求小明物理成績的最后得分;
(2)若小明的化學成績最后得分為分,求小明的原始成績的可能值;
(3)若小明必選物理,其他兩科從化學、生物、歷史、地理、政治五科中任選,求小明此次考試選考科目包括化學的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:函數(shù)
在
上單調遞增;命題
:函數(shù)
在
上單調遞減.
(Ⅰ)若是真命題,求實數(shù)
的取值范圍;
(Ⅱ)若或
為真命題,
且
為假命題,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為考察某動物疫苗預防某種疾病的效果,現(xiàn)對200只動物進行調研,并得到如下數(shù)據(jù):
未發(fā)病 | 發(fā)病 | 合計 | |
未注射疫苗 | 20 | 60 | 80 |
注射疫苗 | 80 | 40 | 120 |
合計 | 100 | 100 | 200 |
(附:)
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
則下列說法正確的:( )
A.至少有99.9%的把握認為“發(fā)病與沒接種疫苗有關”
B.至多有99%的把握認為“發(fā)病與沒接種疫苗有關”
C.至多有99.9%的把握認為“發(fā)病與沒接種疫苗有關”
D.“發(fā)病與沒接種疫苗有關”的錯誤率至少有0.01%
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在棱長為的正方體
中,
是面對角線
上兩個不同的動點.以下四個命題:①存在
兩點,使
;②存在
兩點,使
與直線
都成
的角;③若
,則四面體
的體積一定是定值;④若
,則四面體
在該正方體六個面上的正投影的面積的和為定值.其中為真命題的是____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知、
是橢圓
上關于
軸對稱的兩點,
是
的左焦點,
.
(1)求橢圓的標準方程;
(2)斜率為的直線
過點
,和橢圓
相交于
、
兩點,
,
.點
坐標是
,設
的面積為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:
(
),點
是
的左頂點,點
為
上一點,離心率
.
(1)求橢圓的方程;
(2)設過點的直線
與
的另一個交點為
(異于點
),是否存在直線
,使得以
為直徑的圓經(jīng)過點
,若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com