(本小題滿分12分)
已知數(shù)列和
滿足:
,
其中
為實數(shù),
為正整數(shù).
(1)對任意實數(shù),證明數(shù)列
不是等比數(shù)列;
(2)試判斷數(shù)列是否為等比數(shù)列,并證明你的結(jié)論;
(3)設,
為數(shù)列
的前
項和.是否存在實數(shù)
,使得對任意正整數(shù)
,都有
?若存在,求
的取值范圍;若不存在,說明理由.
(1)見解析;(2)見解析;(3)。
【解析】
試題分析:(1)證明:假設存在一個實數(shù),使{
}是等比數(shù)列,
則有
,即
矛盾.
所以{}不是等比數(shù)列.
(2)解:因為
又,所以
當,
,此時
當時,
,
,
此時,數(shù)列{}是以
為首項,
為公比的等比數(shù)列.
∴
(3)要使對任意正整數(shù)
成立,
即
得(1)
令,則當
為正奇數(shù)時,
∴的最大值為
,
的最小值為
,
于是,由(1)式得
當時,由
,不存在實數(shù)滿足題目要求
當存在實數(shù)
,使得對任意正整數(shù)
,都有
,且
的取值范圍是
。
考點:本題考查等比數(shù)列的簡單性質(zhì)。
點評:本題屬于數(shù)列綜合運用題,考查了由所給的遞推關系證明數(shù)列的性質(zhì),對所給的遞推關系進行研究求數(shù)列的遞推公式以及利用數(shù)列的求和公式求其和,再由和的存在范圍確定使得不等式成立的參數(shù)的取值范圍,難度較大,綜合性很強,對答題者探究的意識與探究規(guī)律的能力要求較高,是一道能力型題.
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、
、
.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com