【題目】已知函數(shù)(其中
為自然對數(shù)的底數(shù)).
(1)若,求函數(shù)
在區(qū)間
上的最大值;
(2)若,關(guān)于
的方程
有且僅有一個(gè)根, 求實(shí)數(shù)
的取值范圍;
(3)若對任意,不等式
均成立, 求實(shí)數(shù)
的取值范圍.
【答案】(1);(2)
;(3)
.
【解析】試題(Ⅰ)求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值即可;(Ⅱ)若a=-1,關(guān)于x的方程f(x)=kg(x)有且僅有一個(gè)根,即,有且只有一個(gè)根,令
,可得h(x)極大=h(2)=
,h(x)極小=h(1)=
,進(jìn)而可得當(dāng)k>
或0<k<
時(shí),k=h(x)有且只有一個(gè)根;(Ⅲ)設(shè)
,因?yàn)?/span>
在[0,2]單調(diào)遞增,故原不等式等價(jià)于|f(x1)-f(x2)|<g(x2)-g(x1)在x1、x2∈[0,2],且x1<x2恒成立,當(dāng)a≥-(ex+2x)恒成立時(shí),a≥-1;當(dāng)a≤ex-2x恒成立時(shí),a≤2-2ln2,綜合討論結(jié)果,可得實(shí)數(shù)a的取值范圍
試題解析:(1)當(dāng)時(shí),
, 故
在
上單調(diào)遞減,
上單調(diào)遞增, 當(dāng)
時(shí),
, 當(dāng)
時(shí),
, 故在區(qū)間
上
.
(2)當(dāng)時(shí), 關(guān)于
的方程為
有且僅有一個(gè)實(shí)根, 則
有且僅有一個(gè)實(shí)根, 設(shè)
,則
,
因此在
和
上單調(diào)遞減, 在
上單調(diào)遞增,
, 如圖所示, 實(shí)數(shù)
的取值范圍是
.
(3)不妨設(shè),則
恒成立.
因此恒成立, 即
恒成立,
且恒成立, 因此
和
均在
上單調(diào)遞增,
設(shè),
則在上
上恒成立, 因此
在
上恒成立因此
,而
在
上單調(diào)遞減, 因此
時(shí),
.由
在
上恒成立, 因此
在
上恒成立, 因此
,設(shè)
,則
.當(dāng)
時(shí),
, 因此
在
內(nèi)單調(diào)遞減, 在
內(nèi)單調(diào)遞增,因此
.綜上述,
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點(diǎn)
處的切線方程;
(Ⅱ)證明:函數(shù)在區(qū)間
上存在唯一的極大值點(diǎn);
(Ⅲ)證明:函數(shù)有且僅有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某市2月1日至14日的空氣質(zhì)量指數(shù)趨勢圖及空氣質(zhì)量指數(shù)與污染程度對應(yīng)表.某人隨機(jī)選擇2月1日至2月13日中的某一天到該市出差,第二天返回(往返共兩天).
空氣質(zhì)量指數(shù) | 污染程度 |
小于100 | 優(yōu)良 |
大于100且小于150 | 輕度 |
大于150且小于200 | 中度 |
大于200且小于300 | 重度 |
(1)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(只寫出結(jié)論不要求證明)
(2)求此人到達(dá)當(dāng)日空氣質(zhì)量優(yōu)良的概率;
(3)求此人出差期間(兩天)空氣質(zhì)量至少有一天為中度或重度污染的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.已知直線l的參數(shù)方程是 (t為參數(shù)),圓C的極坐標(biāo)方程是ρ=4cos θ,求直線l被圓C截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
是函數(shù)
的導(dǎo)數(shù).
(1)若,證明
在區(qū)間
上沒有零點(diǎn);
(2)在上
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)當(dāng)時(shí),求不等式
的解集;
(2)若不等式的解集包含[–1,1],求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年4月25日-27日,北京召開第二屆“一帶一路”國際高峰論壇,組委會(huì)要從6個(gè)國內(nèi)媒體團(tuán)和3個(gè)國外媒體團(tuán)中選出3個(gè)媒體團(tuán)進(jìn)行提問,要求這三個(gè)媒體團(tuán)中既有國內(nèi)媒體團(tuán)又有國外媒體團(tuán),且國內(nèi)媒體團(tuán)不能連續(xù)提問,則不同的提問方式的種數(shù)為 ( )
A. 198B. 268C. 306D. 378
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2018·石家莊一檢]已知函數(shù).
(1)若,求函數(shù)
的圖像在點(diǎn)
處的切線方程;
(2)若函數(shù)有兩個(gè)極值點(diǎn)
,
,且
,求證:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com