【題目】已知傾斜角為的直線經(jīng)過拋物線
:
的焦點
,與拋物線
相交于
、
兩點,且
.
(Ⅰ)求拋物線的方程;
(Ⅱ)過點的兩條直線
、
分別交拋物線
于點
、
和
、
,線段
和
的中點分別為
、
.如果直線
與
的斜率之積等于1,求證:直線
經(jīng)過一定點.
【答案】(Ⅰ);(Ⅱ)證明見解析.
【解析】分析:(Ⅰ)由題意可設(shè)直線的方程為
,與拋物線方程聯(lián)立可得
,由弦長公式可得
,則
,拋物線的方程為
.
(Ⅱ)設(shè)直線的斜率為
,則直線
的斜率為
.則直線
的方程為
,與拋物線方程聯(lián)立可得
,據(jù)此可得
,同理可得:
,直線
的方程為
,即
,直線
經(jīng)過定點
.
詳解:(Ⅰ)由題意可設(shè)直線的方程為
,令
,
.
聯(lián)立得
,∴
,
根據(jù)拋物線的定義得,又,又
,∴
,∴
.
則此拋物線的方程為.
(Ⅱ)設(shè)直線的斜率為
,則直線
的斜率為
.
于是直線的方程為
,即
,
聯(lián)立得
,∴
,
則,∴
,
同理將換成
得:
,
∴
.
則直線的方程為
,
即,顯然當(dāng)
,
.
所以直線經(jīng)過定點
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在空間幾何體中,平面
平面
,
與
都是邊長為2的等邊三角形,
,點
在平面
上的射影在
的平分線上,已知
和平面
所成角為
.
(1)求證:平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象經(jīng)過點
,且在點
處的切線方程為
.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,
恒成立,求實數(shù)
的取值范圍;
(2)證明:當(dāng)時,函數(shù)
有最小值,設(shè)
最小值為
,求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)u(x)=xlnx,v(x)x﹣1,m∈R.
(1)令m=2,求函數(shù)h(x)的單調(diào)區(qū)間;
(2)令f(x)=u(x)﹣v(x),若函數(shù)f(x)恰有兩個極值點x1,x2,且滿足1e(e為自然對數(shù)的底數(shù))求x1x2的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:函數(shù)。
(I)若曲線在點(
,0)處的切線為x軸,求a的值;
(II)求函數(shù)在[0,l]上的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在
處取得極值,求
在
處的切線方程;
(2)討論的單調(diào)性;
(3)若函數(shù)在
上無零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.
根據(jù)該折線圖,下列結(jié)論錯誤的是( )
A. 月接待游客量逐月增加
B. 年接待游客量逐年增加
C. 各年的月接待游客量高峰期大致在7,8月
D. 各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com