【題目】很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛(ài)好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費(fèi)馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以
;如此循環(huán),最終都能夠得到
.下圖為研究“角谷猜想”的一個(gè)程序框圖.若輸入
的值為
,則輸出i的值為( )
A.B.
C.
D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2014年非洲爆發(fā)了埃博拉病毒疫情,在疫情結(jié)束后,當(dāng)?shù)胤酪卟块T(mén)做了一項(xiàng)回訪調(diào)查,得到如下結(jié)果,
患病 | 不患病 | |
有良好衛(wèi)生習(xí)慣 | 20 | 180 |
無(wú)良好衛(wèi)生習(xí)慣 | 80 | 220 |
(1)結(jié)合上面列聯(lián)表,是否有的把握認(rèn)為是否患病與衛(wèi)生習(xí)慣有關(guān)?
(2)現(xiàn)從有良好衛(wèi)生習(xí)慣且不患病的180人中抽取,
,
,
,
共5人,再?gòu)倪@5人中選兩人給市民做健康專(zhuān)題報(bào)告,求
,
至少有一人被選中的概率.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=2sinx(sinxcosx)﹣1圖象向右平移
個(gè)單位得函數(shù)g(x)的圖象,則下列命題中正確的是( )
A.f(x)在(,
)上單調(diào)遞增
B.函數(shù)f(x)的圖象關(guān)于直線x對(duì)稱(chēng)
C.g(x)=2cos2x
D.函數(shù)g(x)的圖象關(guān)于點(diǎn)(,0)對(duì)稱(chēng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線
,其焦點(diǎn)到準(zhǔn)線的距離為2,直線
與拋物線
交于
,
兩點(diǎn),過(guò)
,
分別作拋物線
的切線
,
,
與
交于點(diǎn)
.
(Ⅰ)求的值;
(Ⅱ)若,求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛(ài)好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費(fèi)馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以
;如此循環(huán),最終都能夠得到
.下圖為研究“角谷猜想”的一個(gè)程序框圖.若輸入
的值為
,則輸出i的值為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且
.
(1)若,
,請(qǐng)判斷
的形狀;
(2)若,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列結(jié)論:
①下面程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的,
分別為8,12,則輸出的
;
②若用樣本數(shù)據(jù)0,-1,2,3來(lái)估計(jì)總體的標(biāo)準(zhǔn)差,則總體的標(biāo)準(zhǔn)差估計(jì)值為;
③命題:“若,則
”的否命題是“若
,則
”;
④已知正數(shù),
滿足
,則
的最大值是
;
⑤已知函數(shù)滿足
,
,且當(dāng)
時(shí),
.則
在區(qū)間
為增函數(shù).
其中結(jié)論正確的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.
(1)求證:存在唯一的實(shí)數(shù),使得直線
與曲線
相切;
(2)若,
,求證:
.
(注:為自然對(duì)數(shù)的底數(shù).)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com