【題目】已知函數(shù),
.(
為自然對(duì)數(shù)的底數(shù))
(1)設(shè);
①若函數(shù)在
處的切線過(guò)點(diǎn)
,求
的值;
②當(dāng)時(shí),若函數(shù)
在
上沒(méi)有零點(diǎn),求
的取值范圍.
(2)設(shè)函數(shù),且
,求證:當(dāng)
時(shí),
.
【答案】(1) ,
(2)見解析
【解析】試題分析:(1)①由和
可得在
處的切線方程,代入點(diǎn)
得
;
②當(dāng),可得
,討論
和
時(shí)函數(shù)的單調(diào)性進(jìn)而研究零點(diǎn)即可;
(2)等價(jià)于
,令
,求得求最值即可證得.
試題解析:
(1)①由題意,得,
所以函數(shù)在
處的切線斜率
,又
,
所以函數(shù)在
處的切線方程
,
將點(diǎn)代入,得
.
②當(dāng),可得
,因?yàn)?/span>
,所以
,
當(dāng)時(shí),
,函數(shù)
在
上單調(diào)遞增,而
,
所以只需,解得
,從而
.
當(dāng)時(shí),由
,解得
,
當(dāng)時(shí),
,
單調(diào)遞減;當(dāng)
時(shí),
,
單調(diào)遞增.所以函數(shù)
在
上有最小值為
,
令,解得
,所以
. 綜上所述,
.
(2)由題意,,
而等價(jià)于
.
令,
則,且
,
.
令,則
.
因?yàn)?/span>, 所以
,所以導(dǎo)數(shù)
在
上單調(diào)遞增,
于是.
從而函數(shù)在
上單調(diào)遞增,即
.
即當(dāng)時(shí),
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓M:長(zhǎng)軸上的兩個(gè)頂點(diǎn)為
、
,點(diǎn)P為橢圓M上除
、
外的一個(gè)動(dòng)點(diǎn),若
且
,則動(dòng)點(diǎn)Q在下列哪種曲線上運(yùn)動(dòng)( )
A. 圓 B. 橢圓 C. 雙曲線 D. 拋物線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系.已知直線
的參數(shù)方程是
(
是參數(shù)),圓
的極坐標(biāo)方程為
.
(1)求圓心的直角坐標(biāo);
(2)由直線上的點(diǎn)向圓
引切線,并切線長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的下頂點(diǎn)為
,右頂點(diǎn)為
,離心率
,拋物線
的焦點(diǎn)為
,
是拋物線
上一點(diǎn),拋物線
在點(diǎn)
處的切線為
,且
.
(1)求直線的方程;
(2)若與橢圓
相交于
,
兩點(diǎn),且
,求
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交管部門為宣傳新交規(guī)舉辦交通知識(shí)問(wèn)答活動(dòng),隨機(jī)對(duì)該市歲的人群抽樣了
人,回答問(wèn)題統(tǒng)計(jì)結(jié)果如圖表所示:
分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的頻率 | |
第 | |||
第 | |||
第 | |||
第 | |||
第 |
(1)分別求出,
,
,
的值;
(2)從第,
,
組回答正確的人中用分層抽樣方法抽取
人,則第
,
,
組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,決定在所抽取的人中隨機(jī)抽取
人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的
人中至少有一個(gè)第
組的人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,墻上有一壁畫,最高點(diǎn)離地面4米,最低點(diǎn)
離地面2米,觀察者從距離墻
米,離地面高
米的
處觀賞該壁畫,設(shè)觀賞視角
(1)若問(wèn):觀察者離墻多遠(yuǎn)時(shí),視角
最大?
(2)若當(dāng)
變化時(shí),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)為
,
,離心率
.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓
交于
,
兩點(diǎn),線段
的垂直平分線交
軸于點(diǎn)
,當(dāng)
變化時(shí),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(其中
).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),討論函數(shù)
的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓
的參數(shù)方程為
,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),
軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
,
兩點(diǎn)的極坐標(biāo)分別為.
(1)求圓的普通方程和直線
的直角坐標(biāo)方程;
(2)點(diǎn)是圓
上任一點(diǎn),求
面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com