【題目】已知點(diǎn)和直線
,直線
過直線
上的動(dòng)點(diǎn)
且與直線
垂直,線段
的垂直平分線
與直線
相交于點(diǎn)
(I)求點(diǎn)的軌跡
的方程;
(II)設(shè)直線與軌跡
相交于另一點(diǎn)
,與直線
相交于點(diǎn)
,求
的最小值
【答案】(I);(II)
【解析】
(I)根據(jù)垂直平分線性質(zhì)可知,由拋物線定義可得到所求軌跡方程;(II)由題意可知,直線
斜率存在,且斜率不為零,設(shè)
,
,與拋物線方程聯(lián)立得到韋達(dá)定理的形式,利用坐標(biāo)運(yùn)算表示出
,代入韋達(dá)定理,結(jié)合基本不等式求得最小值.
(I)連接
為線段
的垂直平分線
即點(diǎn)到定點(diǎn)
的距離等于點(diǎn)
到定直線
的距離
由拋物線的定義可知,點(diǎn)的軌跡為:
(II)由題意可知,直線斜率存在,且斜率不為零
設(shè),
,直線
,
將直線方程代入拋物線方程可得:
則
又
,
當(dāng)且僅當(dāng),即
時(shí)取等號
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于x的方程僅有1個(gè)實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍;
(2)若是函數(shù)
的極大值點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月1日,在慶祝新中國成立70周年閱兵中,由我國自主研制的軍用飛機(jī)和軍用無人機(jī)等參閱航空裝備分秒不差飛越天安門,壯軍威,振民心,令世人矚目.飛行員高超的飛行技術(shù)離不開艱苦的訓(xùn)練和科學(xué)的數(shù)據(jù)分析.一次飛行訓(xùn)練中,地面觀測站觀測到一架參閱直升飛機(jī)以千米/小時(shí)的速度在同一高度向正東飛行,如圖,第一次觀測到該飛機(jī)在北偏西
的方向上,1分鐘后第二次觀測到該飛機(jī)在北偏東
的方向上,仰角為
,則直升機(jī)飛行的高度為________千米.(結(jié)果保留根號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)用表示
中的最大值,若函數(shù)
只有一個(gè)零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:
①是偶函數(shù);②
的最大值為
;
③在
有
個(gè)零點(diǎn);④
在區(qū)間
單調(diào)遞增.
其中所有正確結(jié)論的編號是( )
A.①②B.①③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),
,
,設(shè)
,
,其中
為坐標(biāo)原點(diǎn).
(1)設(shè)點(diǎn)在
軸上方,到線段
所在直線的距離為
,且
,求
和線段
的大;
(2)設(shè)點(diǎn)為線段
的中點(diǎn),若
,且點(diǎn)
在第二象限內(nèi),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)為
、
,
,若圓Q方程
,且圓心Q在橢圓上.
(1)求橢圓的方程;
(2)已知直線交橢圓
于A、B兩點(diǎn),過直線
上一動(dòng)點(diǎn)P作與
垂直的直線
交圓Q于C、D兩點(diǎn),M為弦CD中點(diǎn),
的面積是否為定值?若為定值,求出此定值;若不為定值,說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在
處的切線方程為
.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程f(x)=kex(其中e為自然對數(shù)的底數(shù))恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(Ⅰ)若在
內(nèi)單調(diào)遞減,求實(shí)數(shù)
的取值范圍;
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn)分別為
,
,證明:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com