【題目】如圖,在三棱錐中,平面
平面
,
、
均為等邊三角形,
為
的中點,點
在
上.
(1)求證:平面平面
;
(2)若點是線段
的中點,求直線
與平面
所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)證明平面
,再利用面面垂直的判定定理,即可證明結(jié)論;
(2)以,
,
所在的直線分別為
,
,
軸建立空間直角坐標(biāo)系,設(shè)
,求出向量
和面
的一個法向量
,再求兩向量夾角的余弦值,從而求得答案.
(1)因為、
均為等邊三角形,
為
的中點,
所以,
.
又,所以
平面
,即
平面
.
又平面
,所以平面
平面
;
(2)因為平面平面
,平面
平面
,
,
平面
,所以
平面
.
又平面
,所以
,所以
,
,
兩兩互相垂直.
故以,
,
所在的直線分別為
,
,
軸建立空間直角坐標(biāo)系如下圖所示:
不妨設(shè),則
,
.
則點,
,
,
,
,
.
則,
,
,
設(shè)平面的法向量為
,則
,
取,
,
,則
,
,
,
,
,
則直線與平面
所成角的正弦值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:
上的點到焦點的距離最小值為1.
(1)求的值;
(2)若點在曲線
:
上,且在曲線
上存在三點
,
,
,使得四邊形
為平行四邊形.求平行四邊形
的面積
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高二年級的第二學(xué)期,因某學(xué)科的任課教師王老師調(diào)動工作,于是更換了另一名教師趙老師繼任.第二學(xué)期結(jié)束后從全學(xué)年的該門課的學(xué)生考試成績中用隨機(jī)抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如下:
學(xué)校秉持均衡發(fā)展、素質(zhì)教育的辦學(xué)理念,對教師的教學(xué)成績實行績效考核,績效考核方案規(guī)定:每個學(xué)期的學(xué)生成績中與其中位數(shù)相差在范圍內(nèi)(含
)的為合格,此時相應(yīng)的給教師賦分為1分;與中位數(shù)之差大于10的為優(yōu)秀,此時相應(yīng)的給教師賦分為2分;與中位數(shù)之差小于-10的為不合格,此時相應(yīng)的給教師賦分為-1分.
(Ⅰ)問王老師和趙老師的教學(xué)績效考核平均成績哪個大?
(Ⅱ)是否有的把握認(rèn)為“學(xué)生成績?nèi)〉脙?yōu)秀與更換老師有關(guān)”.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)購已經(jīng)逐漸融入了人們的生活,在家里不用出門就可以買到自己想要的東西,在網(wǎng)上付款即可,兩三天就會送到自己的家門口,所以選擇網(wǎng)購的人數(shù)在逐年增加.某網(wǎng)店統(tǒng)計了2014年一2018年五年來在該網(wǎng)店的購買人數(shù)(單位:人)各年份的數(shù)據(jù)如下表:
年份( | 1 | 2 | 3 | 4 | 5 |
24 | 27 | 41 | 64 | 79 |
(1)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合與時間
(單位:年)的關(guān)系,請通過計算相關(guān)系數(shù)
加以說明,(若
,則該線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式
參考數(shù)據(jù)
(2)該網(wǎng)店為了更好的設(shè)計2019年的“雙十一”網(wǎng)購活動安排,統(tǒng)計了2018年“雙十一”期間8個不同地區(qū)的網(wǎng)購顧客用于網(wǎng)購的時間x(單位:小時)作為樣本,得到下表
地區(qū) | ||||||||
時間 | 0.9 | 1.6 | 1.4 | 2.5 | 2.6 | 2.4 | 3.1 | 1.5 |
①求該樣本數(shù)據(jù)的平均數(shù);
②通過大量數(shù)據(jù)統(tǒng)計發(fā)現(xiàn),該活動期間網(wǎng)購時間近似服從正態(tài)分布
,如果預(yù)計2019年“雙十一”期間的網(wǎng)購人數(shù)大約為50000人,估計網(wǎng)購時間
的人數(shù).
(附:若隨機(jī)變量服從正態(tài)分布
則
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線有光學(xué)性質(zhì),即由其焦點射出的光線經(jīng)拋物線反射后,沿平行于拋物線對稱軸的方向射出,反之亦然.如圖所示,今有拋物線,一光源在點
處,由其發(fā)出的光線沿平行于拋物線的對稱軸的方向射向拋物線上的點
,反射后,又射向拋物線上的點
,再反射后又沿平行于拋物線的對稱軸方向射出,途中遇到直線
上的
點,再反射后又射回點
.設(shè)
,
兩點的坐標(biāo)分別是
,
.
(1)證明:;
(2)若四邊形是平行四邊形,且點
的坐標(biāo)為
.求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(2,f(2))處的切線方
程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,
并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2019年的冬令營考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如下圖所示:
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.050 | |
第2組 | 35 | 0.350 | |
第3組 | 10 | 0.100 | |
第4組 | 20 | 0.200 | |
第5組 | 30 | 0.300 | |
合計 | 100 | 1.00 |
(1)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(2)在(1)的前提下,高校決定在這6名學(xué)生中,隨機(jī)抽取2名學(xué)生接受A考官進(jìn)行面試,求第4組至少有一名學(xué)生被A考官測試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
.
(1)若是
上的增函數(shù),求
的取值范圍;
(2)若函數(shù)有兩個極值點,判斷函數(shù)
零點的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com