【題目】已知點,直線
,則
(1)關于
的對稱點
的坐標________;
(2)關于
的對稱直線方程________.
科目:高中數學 來源: 題型:
【題目】已知動圓過定點,且與定直線
相切.
(1)求動圓圓心的軌跡的方程;
(2)若是軌跡
的動弦,且
過
, 分別以
、
為切點作軌跡
的切線,設兩切線交點為
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了鼓勵運動提高所有用戶的身體素質,特推出一款運動計步數的軟件,所有用戶都可以通過每天累計的步數瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數和性別是否有關”,統(tǒng)計了2019年1月份所有用戶的日平均步數,規(guī)定日平均步數不少于8000的為“運動達人”,步數在8000以下的為“非運動達人”,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯(lián)表:
運動達人 | 非運動達人 | 總計 | |
男 | 35 | 60 | |
女 | 26 | ||
總計 | 100 |
(1)(i)將列聯(lián)表補充完整;
(ii)據此列聯(lián)表判斷,能否有的把握認為“日平均走步數和性別是否有關”?
(2)從樣本中的運動達人中抽取7人參加“幸運抽獎”活動,通過抽獎共產生2位幸運用戶,求這2位幸運用戶恰好男用戶和女用戶各一位的概率.
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將這
個自然數隨機地排列在
的正方形方格內,對于同一行或同一列中的任意兩個數,計算較大數與較小數的商,得到
個分數.把最小的分數稱之為這種排列的“特征值”.試求特征值的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“回文數”是指從左到右與從右到左讀都一樣的正整數,如22,121,3553等.顯然2位“回文數”共9個:11,22,33,…,99.現(xiàn)從9個不同2位“回文數”中任取1個乘以4,其結果記為X;從9個不同2位“回文數”中任取2個相加,其結果記為Y.
(1)求X為“回文數”的概率;
(2)設隨機變量表示X,Y兩數中“回文數”的個數,求
的概率分布和數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的右頂點
,離心率為
,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知(異于點
)為橢圓
上一個動點,過
作線段
的垂線
交橢圓
于點
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐中,
,
,
,
,
.
(Ⅰ)求異面直線AB與PD所成角的余弦值;
(Ⅱ)證明:平面平面PBD;
(Ⅲ)求直線DC與平面PBD所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com