【題目】在△ABC中,AB=3,AC邊上的中線BD= ,
=5.
(1)求AC的長(zhǎng);
(2)求sin(2A﹣B)的值.
【答案】
(1)解:∵
=5,AB=3,AC=2AD.
∴
=
.
+
=
,∴(
+
)2=
.
∴ ﹣2
=|
|2,
∴AD=1,AC=2.
(2)解:由(1)得
=
.可得cosA=
,∴sinA=
.
在△ABC中,BC2=AB2+AC2﹣2ABACcosA,∴BC= .
在△ABC中, 可得sinB=
,∴cosB=
.
sin(2A﹣B)=sin2AcosB﹣cos2AsinB=2sinAcosAcosB﹣(1﹣2sin2A)sinB
=2× ﹣(1﹣2×
)×
=
【解析】(1)根據(jù)
=5,
+
=
,利用平方求出AD,再求AC的長(zhǎng);(2)通過數(shù)量積、正弦、余弦定理,求出cosA、sinA、sinB、cosB,把sin(2A﹣B)展開求出它的值.
【考點(diǎn)精析】關(guān)于本題考查的正弦定理的定義和余弦定理的定義,需要了解正弦定理:;余弦定理:
;
;
才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,
底面
,
,
,
,
分別是
,
的中點(diǎn),
在
上,且
.
(1)求證: 平面
;
(2)在線段上上是否存在點(diǎn)
,使二面角
的大小為
?若存在,求出
的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(2cos2x,
),
=(1,sin2x),函數(shù)f(x)=
﹣1.
(1)當(dāng)x= 時(shí),求|a﹣b|的值;
(2)求函數(shù)f(x)的最小正周期以及單調(diào)遞增區(qū)間;
(3)求方程f(x)=k,(0<k<2),在[﹣ ,
]內(nèi)的所有實(shí)數(shù)根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)
也是橢圓
的一個(gè)焦點(diǎn),
與
的公共弦的長(zhǎng)為
.
(1)求的方程;
(2)過點(diǎn)的直線
與
相交于
,
兩點(diǎn),與
相交于
,
兩點(diǎn),且
與
同向
(ⅰ)若,求直線
的斜率
(ⅱ)設(shè)在點(diǎn)
處的切線與
軸的交點(diǎn)為
,證明:直線
繞點(diǎn)
旋轉(zhuǎn)時(shí),
總是鈍角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c且滿足csinA=acosC
(1)求角C的大小;
(2)求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心為C的圓經(jīng)過點(diǎn)A(0,2)和B(1,1),且圓心C在直線l:x+y+5=0上.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若P(x,y)是圓C上的動(dòng)點(diǎn),求3x﹣4y的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的邊長(zhǎng)為2,
是
的中點(diǎn),以點(diǎn)
為圓心,
長(zhǎng)為半徑作圓,點(diǎn)
是該圓上的任一點(diǎn),則
的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4 坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)).以原點(diǎn)為極點(diǎn),
軸正半軸為極軸 建立極坐標(biāo)系,圓
的方程為
.
(1)寫出直線的普通方程和圓
的直角坐標(biāo)方程;
(2)若點(diǎn)的直角坐標(biāo)為
,圓
與直線
交于A,B兩點(diǎn),求
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com