【題目】(本小題共13分)已知函數(shù)
的最小正周期為
.
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間及其圖象的對(duì)稱軸方程.
【答案】解:(Ⅰ)………………………2分
, …………………………3分
因?yàn)?/span>最小正周期為
,所以
,解得
,………………………4分
所以, …………………… 5分
所以. …………………………6分
(Ⅱ)分別由,
可得,
………8分
所以,函數(shù)的單調(diào)增區(qū)間為
;
的單調(diào)減區(qū)間為
………………………10分
由得
.
所以,圖象的對(duì)稱軸方程為
. ………………………13分
【解析】
試題(Ⅰ)
,因?yàn)?/span>
最小正周期為
,可得
, 可得
,即可求出
.(Ⅱ)分別由
,
即可求出單調(diào)區(qū)間;再根據(jù)
,可得
圖象的對(duì)稱軸方程.
試題解析:解:(Ⅰ)
,
因?yàn)?/span>最小正周期為
,所以
,解得
,
所以,
所以.
(Ⅱ)分別由,
可得,
所以,函數(shù)的單調(diào)增區(qū)間為
;
的單調(diào)減區(qū)間為
由得
.
所以,圖象的對(duì)稱軸方程為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.曲線
在
處的切線平行于
軸.
(1)討論的單調(diào)性;
(2)若時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)統(tǒng)計(jì)了2008年到2018十一年間某種生活必需品的年銷售額及年銷售額增速圖,其中條形圖表示年(單位:萬(wàn)元),折線圖年銷售額為年銷售額增長(zhǎng)率(%).
(1)由年銷售額圖判斷,從哪年開始連續(xù)三年的年銷售額方差最大?(結(jié)論不要求證明)
(2)由年銷售額增長(zhǎng)率圖,可以看出2011年銷售額增長(zhǎng)率是最高的,能否表示當(dāng)年銷售額增長(zhǎng)最大?(結(jié)論不要求證明)
(3)從2010年至2014年這五年中隨機(jī)選出兩年,求至少有一年年增長(zhǎng)率超過(guò)20%的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求不等式
的解集;
(2)若的圖像與
軸圍成直角三角形,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過(guò)千分之一,則其生產(chǎn)部門當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司2011-2018年的相關(guān)數(shù)據(jù)如下表所示:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生產(chǎn)臺(tái)數(shù)(萬(wàn)臺(tái)) | 2 | 3 | 4 | 5 | 6 | 7 | 10 | 11 |
該產(chǎn)品的年利潤(rùn)(百萬(wàn)元) | 2.1 | 2.75 | 3.5 | 3.25 | 3 | 4.9 | 6 | 6.5 |
年返修臺(tái)數(shù)(臺(tái)) | 21 | 22 | 28 | 65 | 80 | 65 | 84 | 88 |
部分計(jì)算結(jié)果:
|
注:年返修率=
(1)從該公司2011-2018年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),以表示3年中生產(chǎn)部門獲得考核優(yōu)秀的次數(shù),求
的分布列和數(shù)學(xué)期望;
(2)根據(jù)散點(diǎn)圖發(fā)現(xiàn)2015年數(shù)據(jù)偏差較大,如果去掉該年的數(shù)據(jù),試用剩下的數(shù)據(jù)求出年利潤(rùn)(百萬(wàn)元)關(guān)于年生產(chǎn)臺(tái)數(shù)
(萬(wàn)臺(tái))的線性回歸方程(精確到0.01).
附:線性回歸方程中,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),
恒成立,求實(shí)數(shù)
的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校高一年級(jí)學(xué)生某次身體素質(zhì)體能測(cè)試的原始成績(jī)采用百分制,已知所有這些學(xué)生的原始成績(jī)均分布在內(nèi),發(fā)布成績(jī)使用等級(jí)制.各等級(jí)劃分標(biāo)準(zhǔn)見下表.
規(guī)定:三級(jí)為合格等級(jí),D為不合格等級(jí).為了解該校高一年級(jí)學(xué)生身體素質(zhì)情況,從中抽取了
名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì).按照
的分組作出頻率分布直方圖如圖1所示,樣本中分?jǐn)?shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示.
(I)求和頻率分布直方圖中的
的值,并估計(jì)該校高一年級(jí)學(xué)生成績(jī)是合格等級(jí)的概率;
(II)在選取的樣本中,從兩個(gè)等級(jí)的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行調(diào)研,求至少有一名學(xué)生是
等級(jí)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形所在平面垂直于直角梯形
所在平面,
,
分別是
的中點(diǎn).
(1)求證:平面平面
;
(2)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程恰有四個(gè)不同的實(shí)數(shù)根,當(dāng)函數(shù)
時(shí),實(shí)數(shù)
的取值范圍是
A. B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com