【題目】3月12日,全國政協(xié)總工會界別小組會議上,人社部副部長湯濤在回應(yīng)委員呼聲時(shí)表示無論是從養(yǎng)老金方面,還是從人力資源的合理配置來說,延遲退休是大勢所趨.不過,湯部長也表示,不少職工對于延遲退休有著不同的意見.某高校一社團(tuán)就是否同意延遲退休的情況隨機(jī)采訪了200名市民,并進(jìn)行了統(tǒng)計(jì),得到如下的列聯(lián)表:
贊同延遲退休 | 不贊同延遲退休 | 合計(jì) | |
男性 | 80 | 20 | 100 |
女性 | 60 | 40 | 100 |
合計(jì) | 140 | 60 | 200 |
(1)根據(jù)上面的列聯(lián)表判斷能否有的把握認(rèn)為對延遲退休的態(tài)度與性別有關(guān);
(2)為了進(jìn)一步征求對延遲退休的意見和建議,從抽取的200位市民中對不贊同的按照分層抽樣的方法抽取6人,再從這6人中隨機(jī)抽出3名進(jìn)行電話回訪,求3人中至少有1人為男性的概率.
附: ,其中
.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)見解析;(2)
【解析】試題分析:
(1)根據(jù)列聯(lián)表中的數(shù)據(jù)求得后,再結(jié)合臨界值表中的數(shù)據(jù)進(jìn)行判斷即可.(2)由題意可得在抽取的不贊同延遲退休的6人中,男性2人,女性4人,然后根據(jù)古典概型概率求解可得結(jié)論.
試題解析:
(1)由列聯(lián)表中的數(shù)據(jù)可得.
所以有99.5%的把握認(rèn)為對延遲退休的態(tài)度與性別有關(guān).
(2)設(shè)從不贊同延遲退休的男性中抽取人,從不贊同延遲退休的女性中抽取
人,
由分層抽樣的定義可知,解得
,
在抽取的不贊同延遲退休的6人中,男性2人記為,
,女性4人記為
,
,
,
,則所有的基本事件如下:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
共20種,
其中至少有1人為男性的情況有16種.
記事件為“至少有1人為男性不贊同延遲退休”,
則.
即至少有1人為男性不贊同延遲退休的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某特色餐館開通了美團(tuán)外賣服務(wù),在一周內(nèi)的某特色菜外賣份數(shù)(份)與收入
(元)之間有如下的對應(yīng)數(shù)據(jù):
外賣份數(shù) | 2 | 4 | 5 | 6 | 8 |
收入 | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點(diǎn)圖;
(2)求回歸直線方程;
(3)據(jù)此估計(jì)外賣份數(shù)為12份時(shí),收入為多少元.
注:①參考公式:線性回歸方程系數(shù)公式,
;
②參考數(shù)據(jù): ,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足a1=1,且an+1-an=n+1(n∈N*),則數(shù)列{an}的通項(xiàng)公式為________; 前10項(xiàng)的和為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),當(dāng)
時(shí),有
恒成立,則實(shí)數(shù)m的取值范圍是 ( 。
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的是( )
A.在中,若
,則
B.在銳角三角形中,不等式
恒成立
C.在中,若
,
,則
為等腰直角三角形
D.在中,若
,
,三角形面積
,則三角形外接圓半徑為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:+
=1(a>b>0)經(jīng)過點(diǎn)(1,
),且焦距為2
.
(1)求橢圓C方程;
(2)橢圓C的左,右焦點(diǎn)分別為F1,F2,過點(diǎn)F2的直線l與橢圓C交于A,B兩點(diǎn),求△F2AB面積S的最大值并求出相應(yīng)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面ABCD⊥平面ADEF,其中四邊形ABCD為矩形,四邊形ADEF為梯形,AF∥DE,AF⊥EF,AF=AD=2AB=2DE=2.
(1)求證:CE∥面ABF;
(2)求直線DE與平面BDF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),曲線
:
.以
為極點(diǎn),
軸的非負(fù)半軸為極軸,與直角坐標(biāo)系
取相同的長度單位,建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)射線(
)與曲線
的異于極點(diǎn)的交點(diǎn)為
,與曲線
的交點(diǎn)為
,求
.
【答案】(1) 的極坐標(biāo)方程為
,
的極坐標(biāo)方程為
;(2)
.
【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線,再根據(jù)
將曲線
的
極坐標(biāo)方程;(2)將
代人曲線
的極坐標(biāo)方程,再根據(jù)
求
.
試題解析:(1)曲線的參數(shù)方程
(
為參數(shù))
可化為普通方程,
由,可得曲線
的極坐標(biāo)方程為
,
曲線的極坐標(biāo)方程為
.
(2)射線(
)與曲線
的交點(diǎn)
的極徑為
,
射線(
)與曲線
的交點(diǎn)
的極徑滿足
,解得
,
所以.
【題型】解答題
【結(jié)束】
23
【題目】設(shè)函數(shù).
(1)設(shè)的解集為
,求集合
;
(2)已知為(1)中集合
中的最大整數(shù),且
(其中
,
,
為正實(shí)數(shù)),求證:
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com