【題目】已知直線L的參數(shù)方程為: ,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
.
(Ⅰ)求曲線C的參數(shù)方程;
(Ⅱ)當(dāng) 時(shí),求直線l與曲線C交點(diǎn)的極坐標(biāo).
【答案】(Ⅰ)
(Ⅱ) ;(2,2
),
【解析】
(Ⅰ)先兩邊同乘以,利用
即可得到曲線
的直角坐標(biāo)方程,化為標(biāo)準(zhǔn)方程后可得到其參數(shù)方程;(Ⅱ)將直線的參數(shù)方程利用代入法消去參數(shù)得到普通方程,將直線的普通方程與曲線的直角坐標(biāo)方程聯(lián)立可得交點(diǎn)的直角坐標(biāo),化為極坐標(biāo)即可得結(jié)果.
(Ⅰ)由,可得
所以曲線的直角坐標(biāo)方程為
,
標(biāo)準(zhǔn)方程為,
曲線的極坐標(biāo)方程化為參數(shù)方程為
(Ⅱ)當(dāng)時(shí),直線
的方程為
,化成普通方程為
,
由,解得
或
,
所以直線與曲線
交點(diǎn)的極坐標(biāo)分別為
,
;
,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x,y,z均為正數(shù).
(1)若xy<1,證明:|x+z||y+z|>4xyz;
(2)若=
,求2xy2yz2xz的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,點(diǎn)
、
分別是棱
和
的中點(diǎn),給出下列結(jié)論:
①直線與
所成角為
;②正方體的所有棱中與直線
異面的有
條;③直線
平面
;④平面
平面
.其中正確的是( )
A.①②B.②③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的零點(diǎn)構(gòu)成一個(gè)公差為
的等差數(shù)列,把函數(shù)
的圖象沿
軸向右平移
個(gè)單位,得到函數(shù)
的圖象.關(guān)于函數(shù)
,下列說法正確的是( )
A. 在上是增函數(shù)B. 其圖象關(guān)于直線
對稱
C. 函數(shù)是偶函數(shù)D. 在區(qū)間
上的值域?yàn)?/span>
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)[選修4-5:不等式選講]
已知函數(shù)=|x-a|+
(a≠0)
(1)若不等式-
≤1恒成立,求實(shí)數(shù)m的最大值;
(2)當(dāng)a<時(shí),函數(shù)g(x)=
+|2x-1|有零點(diǎn),求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽(yù)為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強(qiáng)勁活力.某移動支付公司從我市移動支付用戶中隨機(jī)抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周移動支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計(jì) | 15 | 12 | 13 | 7 | 8 | 45 |
(Ⅰ)把每周使用移動支付超過3次的用戶稱為“移動支付活躍用戶”,能否在犯錯(cuò)誤概率不超過0.005的前提下,認(rèn)為是否為“移動支付活躍用戶”與性別有關(guān)?
(Ⅱ)把每周使用移動支付6次及6次以上的用戶稱為“移動支付達(dá)人”,視頻率為概率,在我市所有“移動支付達(dá)人”中,隨機(jī)抽取4名用戶.
①求抽取的4名用戶中,既有男“移動支付達(dá)人”又有女“移動支付達(dá)人”的概率;
②為了鼓勵(lì)男性用戶使用移動支付,對抽出的男“移動支付達(dá)人”每人獎勵(lì)300元,記獎勵(lì)總金額為,求
的分布列及數(shù)學(xué)期望.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線
的參數(shù)方程為
為參數(shù),曲線
上的點(diǎn)
的極坐標(biāo)分別為
.
(1)過O作線段的垂線,垂足為H,求點(diǎn)H的軌跡
的直角坐標(biāo)方程;
(2)求兩點(diǎn)間的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·石家莊一模)祖暅?zhǔn)悄媳背瘯r(shí)期的偉大數(shù)學(xué)家,5世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任何一個(gè)平面所截,如果截面面積都相等,那么這兩個(gè)幾何體的體積一定相等.現(xiàn)有以下四個(gè)幾何體:圖①是從圓柱中挖去一個(gè)圓錐所得的幾何體,圖②、圖③、圖④分別是圓錐、圓臺和半球,則滿足祖暅原理的兩個(gè)幾何體為( )
A. ①② B. ①③
C. ②④ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和為
,
,
,
,
.
(1)若,
,求
的值;
(2)若數(shù)列的前
項(xiàng)成公差不為0的等差數(shù)列,求
的最大值;
(3)若,是否存在
,使
為等比數(shù)列?若存在,求出所有符合題意的
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com