8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

精英家教網 > 高中數學 > 題目詳情
已知等差數列{an}的前n項和為Sn且滿足S17>0,S18<0,則
S1
a1
,
S2
a2
,…,
S17
a17
中最大的項為(  )
分析:由題意可得a9>0,a10<0,由此可知
S1
a1
>0,
S2
a2
>0,…,
S10
a10
<0,
S11
a11
<0,…,
S17
a17
<0,即可得出答案.
解答:解:∵等差數列{an}中,S17>0,且S18<0
即S17=17a9>0,S18=9(a10+a9)<0  
∴a10+a9<0,a9>0,∴a10<0,
∴等差數列{an}為遞減數列,
故可知a1,a2,…,a9為正,a10,a11…為負;
∴S1,S2,…,S17為正,S18,S19,…為負,
S1
a1
>0,
S2
a2
>0,…,
S10
a10
<0,
S11
a11
<0,…,
S17
a17
<0,
又∵S1<S2<…<S9,a1>a2>…>a9,
S1
a1
S2
a2
,…,
S17
a17
中最大的項為
S9
a9

故選D
點評:本題考查學生靈活運用等差數列的前n項和的公式化簡求值,掌握等差數列的性質,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知等差數列{an},公差d不為零,a1=1,且a2,a5,a14成等比數列;
(1)求數列{an}的通項公式;
(2)設數列{bn}滿足bn=an3n-1,求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}滿足a2=0,a6+a8=-10
(1)求數列{an}的通項公式;     
(2)求數列{|an|}的前n項和;
(3)求數列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知等差數列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若{an}為遞增數列,請根據如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習冊答案