【題目】在幾何體中,
面
,直角梯形
中,
,
,且
,且
.
(1)求證:平面平面
;
(2)若直線與平面
所成角的正切值為
,求二面角
的余弦值.
【答案】(1)見解析(2)
【解析】
(1)過點(diǎn)作
交
于
,連接
,根據(jù)勾股定理的逆定理可知,
,由
面
可得
,根據(jù)線面垂直的判定定理可證得
平面
,再由面面垂直的判定定理即可證出;
(2)易證面
,可得
為
與面
所成的角,從而可計(jì)算出
,再以
為原點(diǎn),分別以
,
與
為
軸,建立空間直角坐標(biāo)系,然后分別求出平面
的法向量和平面
的法向量,即可由向量法求出二面角
的余弦值.
(1)如圖所示:
∵面
,∴
,
在梯形中,過
作
交
于
,∴
,
,
,∴
,即
,即
.
∵,
,∴
平面
,
∵平面
∴平面
平面
,
(2)連接,
面
,∴
為
與面
所成的角,
,∵
,∴
,∵
,
,∴
,
以為原點(diǎn),分別以
,
與
為
軸,建立如圖所示的空間直角坐標(biāo)系,則
,可知
,
設(shè)平面的法向量為
,
可知,可取
,
設(shè)平面的法向量為
,
可知,可取
,
可知兩向量的夾角的余弦值為.
由圖可知二面角為鈍角,所以二面角
的余弦值為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為橢圓
的左、右焦點(diǎn),
為該橢圓的一條垂直于
軸的動弦,直線
與
軸交于點(diǎn)
,直線
與直線
的交點(diǎn)為
.
(1)證明:點(diǎn)恒在橢圓
上.
(2)設(shè)直線與橢圓
只有一個公共點(diǎn)
,直線
與直線
相交于點(diǎn)
,在平面內(nèi)是否存在定點(diǎn)
,使得
恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機(jī)生產(chǎn)企業(yè)為了對研發(fā)的一批最新款手機(jī)進(jìn)行合理定價(jià),將該款手機(jī)按事先擬定的價(jià)格進(jìn)行試銷,得到單價(jià)(單位:千元)與銷量
(單位:百件)的關(guān)系如下表所示:
單價(jià) | 1 | 1.5 | 2 | 2.5 | 3 |
銷量 | 10 | 8 | 7 | 6 |
已知.
(Ⅰ)若變量,
具有線性相關(guān)關(guān)系,求產(chǎn)品銷量
(百件)關(guān)于試銷單價(jià)
(千元)的線性回歸方程
;
(Ⅱ)用(Ⅰ)中所求的線性回歸方程得到與對應(yīng)的產(chǎn)品銷量的估計(jì)值
,當(dāng)銷售數(shù)據(jù)
對應(yīng)的殘差滿足
時,則稱
為一個“好數(shù)據(jù)”,現(xiàn)從5個銷售數(shù)據(jù)中任取3個,求其中“好數(shù)據(jù)”的個數(shù)
的分布列和數(shù)學(xué)期望.
參考公式:,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程是
(
為參數(shù),
),在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線
的極坐標(biāo)方程是
,等邊
的頂點(diǎn)都在
上,且點(diǎn)
,
,
按照逆時針方向排列,點(diǎn)
的極坐標(biāo)為
.
(Ⅰ)求點(diǎn),
,
的直角坐標(biāo);
(Ⅱ)設(shè)為
上任意一點(diǎn),求點(diǎn)
到直線
的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知離心率為的橢圓
,
經(jīng)過拋物線
的焦點(diǎn)
,斜率為1的直線
經(jīng)過
且與橢圓交于
兩點(diǎn).
(1)求面積;
(2)動直線與橢圓有且僅有一個交點(diǎn),且與直線
,
分別交于
兩點(diǎn),且
為橢圓的右焦點(diǎn),證明
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)討論在
上的單調(diào)性.
(2)當(dāng)時,若
在
上的最大值為
,討論:函數(shù)
在
內(nèi)的零點(diǎn)個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某高中女學(xué)生中選取10名學(xué)生,根據(jù)其身高、體重
數(shù)據(jù),得到體重關(guān)于身高的回歸方程
,用來刻畫回歸效果的相關(guān)指數(shù)
,則下列說法正確的是( )
A.這些女學(xué)生的體重和身高具有非線性相關(guān)關(guān)系
B.這些女學(xué)生的體重差異有60%是由身高引起的
C.身高為的女學(xué)生的體重一定為
D.這些女學(xué)生的身高每增加,其體重約增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某地區(qū)某高傳染性病毒流行期間,為了建立指標(biāo)顯示校情已受控制,以便向該地區(qū)居眾顯示可以過正常生活,有公共衛(wèi)生專家建議的指標(biāo)是“連續(xù)天每天新增感染人數(shù)不超過
人”,根據(jù)連續(xù)
天的新增病例數(shù)計(jì)算,下列各項(xiàng)選項(xiàng)中,一定符合上述指標(biāo)的是( )
①平均數(shù);
②標(biāo)準(zhǔn)差;
③平均數(shù);且標(biāo)準(zhǔn)差
;
④平均數(shù);且極差小于或等于
;
⑤眾數(shù)等于且極差小于或等于
.
A.①②B.③④C.③④⑤D.④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com