【題目】已知矩陣(
)滿足
(I為單位矩陣).
(1)求m的值;
(2)設(shè),
.矩陣變換
可以將點P變換為點Q.當點P在直線
上移動時,求經(jīng)過矩陣A變換后點Q的軌跡方程.
(3)是否存在這樣的直線:它上面的任一點經(jīng)上述變換后得到的點仍在該直線上?若存在,求出所有這樣的直線;若不存在,則說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們知道,地球上的水資源有限,愛護地球、節(jié)約用水是我們每個人的義務(wù)和責(zé)任.某市政府為了對自來水的使用進行科學(xué)管理,節(jié)約水資源,計劃確定一個家庭年用水量的標準,為此,對全市家庭日常用水的情況進行抽樣調(diào)查,并獲得了個家庭某年的用水量(單位:立方米),統(tǒng)計結(jié)果如下表所示.
(Ⅰ)分別求出的值;
(Ⅱ)若以各組區(qū)間中點值代表該組的取值,試估計全市家庭平均用水量;
(Ⅲ)從樣本中年用水量在(單位:立方米)的
個家庭中任選
個,作進一步跟蹤研究,求年用水量最多的家庭被選中的概率(
個家庭的年用水量都不相等).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點,
軸正半軸為極坐標建立極坐標系,圓
的極坐標方程為
.
求
的普通方程;
將圓
平移,使其圓心為
,設(shè)
是圓
上的動點,點
與
關(guān)于原點
對稱,線段
的垂直平分線與
相交于點
,求
的軌跡的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知橢圓1(a>b>0)的右頂點為(2,0),離心率為
,P是直線x=4上任一點,過點M(1,0)且與PM垂直的直線交橢圓于A,B兩點.
(1)求橢圓的方程;
(2)若P點的坐標為(4,3),求弦AB的長度;
(3)設(shè)直線PA,PM,PB的斜率分別為k1,k2,k3,問:是否存在常數(shù)λ,使得k1+k3=λk2?若存在,求出λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,
平面
,
為
邊上一點,
,
.
(1)證明:平面平面
.
(2)若,試問:
是否與平面
平行?若平行,求三棱錐
的體積;若不平行,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,
平面
,
為
邊上一點,
,
.
(1)證明:平面平面
.
(2)若,試問:
是否與平面
平行?若平行,求三棱錐
的體積;若不平行,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的方程為x2+y2-2x-2y-6=0,以坐標原點O為圓心的圓O與圓M相切.
(1)求圓O的方程;
(2)圓O與x軸交于E,F兩點,圓O內(nèi)的動點D使得DE,DO,DF成等比數(shù)列,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗
(噸)標準煤的幾組對照數(shù)據(jù)
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于
的線性回歸方程
;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟實力的不斷提升,居民收人也在不斷增加。某家庭2018年全年的收入與2014年全年的收入相比增加了一倍,實現(xiàn)翻番.同時該家庭的消費結(jié)構(gòu)隨之也發(fā)生了變化,現(xiàn)統(tǒng)計了該家庭這兩年不同品類的消費額占全年總收入的比例,得到了如下折線圖:
則下列結(jié)論中正確的是( )
A. 該家庭2018年食品的消費額是2014年食品的消費額的一半
B. 該家庭2018年教育醫(yī)療的消費額與2014年教育醫(yī)療的消費額相當
C. 該家庭2018年休閑旅游的消費額是2014年休閑旅游的消費額的五倍
D. 該家庭2018年生活用品的消費額是2014年生活用品的消費額的兩倍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com