【題目】已知函數(shù).
(1)若函數(shù)在
上為增函數(shù),求
的取值范圍;
(2)若函數(shù)有兩個(gè)不同的極值點(diǎn),記作
,
,且
,證明:
(
為自然對(duì)數(shù)).
【答案】(1)(2)見解析
【解析】
分析:(1)由題意可知,函數(shù)的定義域?yàn)?/span>
,
,因?yàn)楹瘮?shù)
在
為增函數(shù),所以
在
上恒成立,等價(jià)于
,
由此可求的取值范圍;
(2)求出,因?yàn)?/span>
有兩極值點(diǎn)
,所以
,
設(shè)令,則
,上式等價(jià)于要證
,令
,根據(jù)函數(shù)的單調(diào)性證出即可.
詳解:
(1)由題意可知,函數(shù)的定義域?yàn)?/span>
,
,
因?yàn)楹瘮?shù)在
為增函數(shù),所以
在
上恒成立,
等價(jià)于在
上恒成立,即
,
因?yàn)?/span>,所以
,
故的取值范圍為
.
(2)可知,
所以,
因?yàn)?/span>有兩極值點(diǎn)
,所以
,
欲證,等價(jià)于要證:
,即
,
所以,因?yàn)?/span>
,所以原式等價(jià)于要證明:
,①
由,可得
,則有
,②
由①②原式等價(jià)于要證明:,即證
,
令,則
,上式等價(jià)于要證
,
令,則
因?yàn)?/span>,所以
,所以
在
上單調(diào)遞增,
因此當(dāng)時(shí),
,即
.
所以原不等式成立,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤(rùn)分別為和
(萬元),它們與投入資金
(萬元)的關(guān)系有如下公式:
,
,今將200萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投入資金都不低于25萬元.
(Ⅰ)設(shè)對(duì)乙種產(chǎn)品投入資金(萬元),求總利潤(rùn)
(萬元)關(guān)于
的函數(shù)關(guān)系式及其定義域;
(Ⅱ)如何分配投入資金,才能使總利潤(rùn)最大,并求出最大總利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)
,拋物線
的焦點(diǎn)為
,設(shè)
為拋物線
上異于頂點(diǎn)的動(dòng)點(diǎn),直線
交拋物線
于另一點(diǎn)
,連結(jié)
,
,并延長(zhǎng),分別交拋物線
與點(diǎn)
,
.
(1)當(dāng)軸時(shí),求直線
與
軸的交點(diǎn)的坐標(biāo);
(2)設(shè)直線,
的斜率分別為
,
,試探索
是否為定值?若是,求出此定值;若不是,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
,對(duì)任意
,有
成立.
(1)求的通項(xiàng)公式;
(2)設(shè),
,
是數(shù)列
的前
項(xiàng)和,求正整數(shù)
,使得對(duì)任意
,
恒成立;
(3)設(shè),
是數(shù)列
的前
項(xiàng)和,若對(duì)任意
均有
恒成立,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為
(
為參數(shù)),以平面直角坐標(biāo)系
的原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)求曲線的直角坐標(biāo)方程及曲線
上的動(dòng)點(diǎn)
到坐標(biāo)原點(diǎn)
的距離
的最大值;
(Ⅱ)若曲線與曲線
相交于
,
兩點(diǎn),且與
軸相交于點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C-EM-N的正弦值;
(Ⅲ)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是直線
上一動(dòng)點(diǎn),PA、PB是圓
的兩條切線,A、B為切點(diǎn),若四邊形PACB面積的最小值是2,則
的值是
A. B.
C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某小區(qū)為美化環(huán)境,準(zhǔn)備在小區(qū)內(nèi)的草坪的一側(cè)修建一條直路OC,另一側(cè)修建一條休閑大道.休閑大道的前一段OD是函數(shù)的圖象的一部分,后一段DBC是函數(shù)
的圖象,圖象的最高點(diǎn)為
,且
,垂足為點(diǎn)F.
(1)求函數(shù)的解析式;
(2)若在草坪內(nèi)修建如圖所示的矩形兒童樂園PMFE,點(diǎn)P在曲線OD上,其橫坐標(biāo)為,點(diǎn)E在OC上,求兒童樂園的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)設(shè)函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)函數(shù)有最大值且最大值大于
時(shí),求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com