(本題滿分14分)
已知函數(shù).
(Ⅰ)若為
上的單調(diào)函數(shù),試確定實數(shù)
的取值范圍;[來源:學(xué)_科_網(wǎng)Z_X_X_K]
(Ⅱ)求函數(shù)在定義域上的極值;
(Ⅲ)設(shè),求證:
.
又由可得:
,
………………10分
代入(*)得
………13分
故直線.
………………14分
法二:顯然直線的斜率存在,設(shè)
的方程為
,
代入得
………………8分
過焦點(diǎn),
顯然成立
設(shè)
,
…………………………①
………9分
且
………………10分
由①②解得代入③ ……………………12分
整理得:
……………………13分
的方程為
……………………14分
(Ⅱ)①當(dāng)為定義域上的增函數(shù),
沒有極值; ………………6分
②當(dāng)時,由
得
由得
上單調(diào)遞增,
上單調(diào)遞減. …………8分
故當(dāng)時,
有極大值
,但無極小值. ……9分
(Ⅲ)由(Ⅰ)知時,
在
上單調(diào)遞減
即
令,得
所以
. ………………14分
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為
上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實數(shù)m的值
(Ⅱ)若ACRB,求實數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)是⊙
:
上的任意一點(diǎn),過
作
垂直
軸于
,動點(diǎn)
滿足
。
(1)求動點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動點(diǎn)
的軌跡上是否存在兩個不重合的兩點(diǎn)
、
,使
(O是坐標(biāo)原點(diǎn)),若存在,求出直線
的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根
,請求出一個長度為
的區(qū)間
,使
;如果沒有,請說明理由?(注:區(qū)間的長度為
).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com