過橢圓的左頂點(diǎn)
作斜率為2的直線,與橢圓的另一個交點(diǎn)為
,與
軸的交點(diǎn)為
,已知
.
(1)求橢圓的離心率;
(2)設(shè)動直線與橢圓有且只有一個公共點(diǎn)
,且與直線
相交于點(diǎn)
,若
軸上存在一定點(diǎn)
,使得
,求橢圓的方程.
(1);(2)
.
解析試題分析:(I)根據(jù),設(shè)直線方程為
,
確定的坐標(biāo),由
確定得到
,
再根據(jù)點(diǎn)在橢圓上,求得
進(jìn)一步即得所求
;
(2)由可設(shè)
,
得到橢圓的方程為,
由得
根據(jù)動直線與橢圓有且只有一個公共點(diǎn)P
得到,整理得
.
確定的坐標(biāo)
,
又,
若軸上存在一定點(diǎn)
,使得
,那么
可得,由
恒成立,故
,得解.
試題解析:(1)∵
,設(shè)直線方程為
,
令,則
,∴
, 2分
∴ 3分
∵,∴
=
,
整理得 4分
∵點(diǎn)在橢圓上,∴
,∴
5分
∴即
,∴
6分
(2)∵可設(shè)
,
∴橢圓的方程為 7分
由得
8分
∵動直線與橢圓有且只有一個公共點(diǎn)P
∴,即
整理得 9分
設(shè)
則有
,
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn)的雙曲線的右焦點(diǎn)為
,實(shí)軸長
.
(1)求雙曲線的方程
(2)若直線與雙曲線恒有兩個不同的交點(diǎn)
,且
為銳角(其中
為原點(diǎn)),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,F是拋物線C:x2=2py(p>0)的焦點(diǎn),M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),過M,F,O三點(diǎn)的圓的圓心為Q,點(diǎn)Q到拋物線C的準(zhǔn)線的距離為.
(1)求拋物線C的方程;
(2)是否存在點(diǎn)M,使得直線MQ與拋物線C相切于點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.
(3)若點(diǎn)M的橫坐標(biāo)為,直線l:y=kx+
與拋物線C有兩個不同的交點(diǎn)A,B,l與圓Q有兩個不同的交點(diǎn)D,E,求當(dāng)
≤k≤2時,|AB|2+|DE|2的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知常數(shù),向量
,經(jīng)過定點(diǎn)
以
為方向向量的直線與經(jīng)過定點(diǎn)
以
為方向向量的直線相交于
,其中
,
(1)求點(diǎn)的軌跡
的方程;(2)若
,過
的直線交曲線
于
兩點(diǎn),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)為F(0,1).
(1)求拋物線C的方程;
(2)過點(diǎn)F作直線交拋物線C于A,B兩點(diǎn),若直線AO,BO分別交直線l:y=x-2于M,N兩點(diǎn),求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
我校某同學(xué)設(shè)計了一個如圖所示的“蝴蝶形圖案(陰影區(qū)域)”來慶祝數(shù)學(xué)學(xué)科節(jié)的成功舉辦.其中、
是過拋物線
焦點(diǎn)
的兩條弦,且其焦點(diǎn)
,
,點(diǎn)
為
軸上一點(diǎn),記
,其中
為銳角.
(1)求拋物線方程;
(2)當(dāng)“蝴蝶形圖案”的面積最小時求的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)過點(diǎn)A(1,-2).
(1)求拋物線C的方程,并求其準(zhǔn)線方程.
(2)是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心為坐標(biāo)原點(diǎn),短軸長為2,一條準(zhǔn)線的方程為l:x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)設(shè)O為坐標(biāo)原點(diǎn),F是橢圓的右焦點(diǎn),點(diǎn)M是直線l上的動點(diǎn),過點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓與
的離心率相等. 直線
與曲線
交于
兩點(diǎn)(
在
的左側(cè)),與曲線
交于
兩點(diǎn)(
在
的左側(cè)),
為坐標(biāo)原點(diǎn),
.
(1)當(dāng)=
,
時,求橢圓
的方程;
(2)若,且
和
相似,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com