【題目】如圖,四棱錐,側(cè)面
是邊長為2的正三角形,且與底面垂直,底面
是
的菱形,
為棱
上的動點,且
.
(I)求證: 為直角三角形;
(II)試確定的值,使得二面角
的平面角余弦值為
.
【答案】(1)見解析;(II) .
【解析】試題分析:(1)取中點
,連結(jié)
,以
為原點,
為
軸,
為
軸,
為
軸,建立空間直角坐標系,利用向量法能證明
為直角三角形;(2)設
,由
,得
,求出平面
的法向量和平面
的法向量,,根據(jù)空間向量夾角余弦公式能求出結(jié)果.
試題解析:(I)取中點
,連結(jié)
,依題意可知
均為正三角形,所以
,
又平面
平面
,
所以平面
,
又平面
,所以
,
因為,所以
,即
,
從而為直角三角形.
說明:利用 平面
證明正確,同樣滿分!
(II)[向量法]由(I)可知,又平面
平面
,平面
平面
,
平面
,所以
平面
.
以為原點,建立空間直角坐標系
如圖所示,則
,
由可得點
的坐標
所以,
設平面的法向量為
,則
,
即解得
,
令,得
,
顯然平面的一個法向量為
,
依題意,
解得或
(舍去),
所以,當時,二面角
的余弦值為
.
[傳統(tǒng)法]由(I)可知平面
,所以
,
所以為二面角
的平面角,
即,
在中,
,
所以
,
由正弦定理可得,即
解得,
又,所以
,
所以,當時,二面角
的余弦值為
.
科目:高中數(shù)學 來源: 題型:
【題目】對某校高一年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取名學生作為樣本,得到這
名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合計 | 1 |
(1)求出表中及圖中
的值;
(2)試估計他們參加社區(qū)服務的平均次數(shù);
(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,求至少1人參加社區(qū)服務次數(shù)在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是矩形,面
底面
,且
是邊長為
的等邊三角形,
,
在
上,且
∥面BDM.
(1)求直線PC與平面BDM所成角的正弦值;
(2)求平面BDM與平面PAD所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:
(
),設
為圓
與
軸負半軸的交點,過點
作圓
的弦
,并使弦
的中點恰好落在
軸上.
(Ⅰ)求點的軌跡
的方程;
(Ⅱ)延長交曲線
于點
,曲線
在點
處的切線與直線
交于點
,試判斷以點
為圓心,線段
長為半徑的圓與直線
的位置關系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(
,
),曲線
在
處的切線方程為
.
(Ⅰ)求,
的值;
(Ⅱ)證明: ;
(Ⅲ)已知滿足的常數(shù)為
.令函數(shù)
(其中
是自然對數(shù)的底數(shù),
),若
是
的極值點,且
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三年級一次數(shù)學考試后,為了解學生的數(shù)學學習情況,隨機抽取名學生的數(shù)學成績,制成表所示的頻率分布表.
組號 | 分組 | 頻數(shù) | 頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 | |||
合計 |
(1)求、
、
的值;
(2)若從第三、四、五組中用分層抽樣方法抽取名學生,并在這
名學生中隨機抽取
名學生與張老師面談,求第三組中至少有
名學生與張老師面談的概率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在研究塞卡病毒(Zika virus)某種疫苗的過程中,為了研究小白鼠連續(xù)接種該種疫苗后出現(xiàn)癥狀的情況,做接種試驗,試驗設計每天接種一次,連續(xù)接種3天為一個接種周期.已知小白鼠接種后當天出現(xiàn)
癥狀的概率為
,假設每次接種后當天是否出現(xiàn)
癥狀與上次接種無關.
(1)若出現(xiàn)癥狀即停止試驗,求試驗至多持續(xù)一個接種周期的概率;
(2)若在一個接種周期內(nèi)出現(xiàn)3次 癥狀,則這個接種周期結(jié)束后終止試驗,試驗至多持續(xù)3個周期,設接種試驗持續(xù)的接種周期數(shù)為
,求
的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com