【題目】如圖,拋物線與
軸相交于點
,與過點
平行于
軸的直線相交于點
(點
在第一象限).拋物線的頂點
在直線
上,對稱軸與
軸相交于點
.平移拋物線,使其經(jīng)過點
、
,則平移后的拋物線的解析式為__________.
【答案】
【解析】
先求出點A的坐標,再根據(jù)中位線定理可得頂點C的縱坐標,然后利用頂點坐標公式列式求出b的值,再求出點D的坐標,根據(jù)平移的性質(zhì)設(shè)平移后的拋物線的解析式為y=x2+mx+n,把點A、D的坐標代入進行計算即可得解.
解:∵令x=0,則y=,
∴點A(0,),B(-b,
),
∴拋物線的對稱軸為x=- ,直線OB的解析式為y=-
x,
∵拋物線的頂點C在直線OB上,
∴y=
∴頂點C的縱坐標為×
=
,
即 ,
解得b1=3,b2=-3,
由圖可知,->0,
∴b<0,
∴b=-3,
∴對稱軸為直線x=-=
,
∴點D的坐標為(,0),
設(shè)平移后的拋物線的解析式為y=x2+mx+n,
則 ,
解得 ,
所以,y=x2-x+
.
故答案為:y=x2-x+
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點E在AD邊上,點F在AD的延長線上,且BE=CF.
(1)求證:四邊形EBCF是平行四邊形.
(2)若∠BEC=90°,∠ABE=30°,AB=,求ED的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,
,
,
,點
在線段
上,
.點
從
點出發(fā),沿
方向運動,以
為直徑作
,當
運動到點
時停止運動,設(shè)
.
(1)___________,
___________.(用
的代數(shù)式表示)
(2)當為何值時,
與
的一邊相切?
(3)在點整個運動過程中,過點
作
的切線交折線
于點
,將線段
繞點
順時針旋轉(zhuǎn)
得到
,過
作
于
.
①當線段長度達到最大時,求
的值;
②直接寫出點所經(jīng)過的路徑長是________.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸的一個交點為B(4,0),另一個交點為A,且與y軸相交于C點.
(1)求m的值及C點坐標;
(2)在直線BC上方的拋物線上是否存在一點M,使得它與B,C兩點構(gòu)成的三角形面積最大,若存在,求出此時M點坐標;若不存在,請簡要說明理由;
(3)P為拋物線上一點,它關(guān)于直線BC的對稱點為Q.
①當四邊形PBQC為菱形時,求點P的坐標;
②點P的橫坐標為t(0<t<4),當t為何值時,四邊形PBQC的面積最大,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,
,
,點
是
邊上一點,且
.點
是直線
上一點且在點
的右側(cè),
,點
從點
出發(fā),沿射線
方向以每秒1個單位長度的速度運動,設(shè)運動時間為
秒.以
為圓心,
為半徑作半圓
,交直線
分別于點
,
(點
在
的左側(cè)).
(1)當秒時,
的長等于__________,
__________秒時,半圓
與
相切;
(2)當點與點
重合時,求半圓
被矩形
的對角線
所截得的弦長;
(3)若,求扇形
的面積.
(參考數(shù)據(jù):,
,
)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市對火車站進行了大規(guī)模的改建,改建后的火車站除原有的普通售票窗口外,新增了自動打印車票的無人售票窗口.某日,從早8點開始到上午11點,每個普通售票窗口售出的車票數(shù)y1(張)與售票時間x(小時)的正比例函數(shù)關(guān)系滿足圖①中的圖象,每個無人售票窗口售出的車票數(shù)y2(張)與售票時間x(小時)的函數(shù)關(guān)系滿足圖②中的圖象.
(1)圖②中圖象的前半段(含端點)是以原點為頂點的拋物線的一部分,根據(jù)圖中所給數(shù)據(jù)確定拋物線的表達式為 ,其中自變量x的取值范圍是 ;
(2)若當天共開放5個無人售票窗口,截至上午9點,兩種窗口共售出的車票數(shù)不少于1450張,則至少需要開放多少個普通售票窗口?
(3)上午10點時,每個普通售票窗口與每個無人售票窗口售出的車票數(shù)恰好相同,試確定圖②中圖象的后半段一次函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,將點P沿著y軸翻折,得到的對應(yīng)點再沿著直線l翻折得到點P1,則P1稱為點P的“l變換點”.
(1)已知:點P(1,0),直線l:x=2,求點P的“l變換點”的坐標;
(2)若點Q和它的“l變換點”Q1的坐標分別為(2,1)和(3,2),求直線l的解析式;
(3)如圖,⊙O的半徑為2.
①若⊙O上存在點M,點M的“l變換點”M1在射線x(x≥0)上,直線l:x=b,求b的取值范圍;
②將⊙O在x軸上移動得到⊙E,若⊙E上存在點N,使得點N的“l變換點”N1在y軸上,且直線l的解析式為y=x+1,求E點橫坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=3.點M是AB邊上一點,且∠CMB=45°.點Q是直線AB上一點且在點B的右側(cè),BQ=4,點P從點Q出發(fā),沿射線QA方向以每秒2個單位長度的速度運動,設(shè)運動時間為t秒.以P為圓心,PC長為半徑作半圓P,交直線AB分別于點G,H(點G在點H的左側(cè)).
(1)當t=1秒時,PC的長為 ,t= 秒時,半圓P與AD相切;
(2)當點P與點B重合時,求半圓P被矩形ABCD的對角線AC所截得的弦長;
(3)若∠MCP=15°,請直接寫出扇形HPC的弧長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,點P為矩形ABCD內(nèi)一點,滿足∠APB=90°,連結(jié)C、P兩點,并延長CP交直線AB于點E.若點P是線段CE的中點,則BE=____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com