8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

在等腰梯形ABCD中,AD∥BC,AD=CD=AB,∠C=60°,點E、F是AD、CD上兩點,且DE=CF,AF、BE交于點O.
(1)請你猜測∠BOF=
120°
120°

(2)試證明你所猜測的結果.
分析:(1)根據(jù)題中所給條件可知∠BOF=120°;
(2)通過SAS證明△ABE≌△DAF,可知∠BOF=∠ABO+∠OAB=∠DAF+∠OAB=∠EAB,又∠C=60°,可知∠EAB=120°,繼而即可求出的答案.
解答:解:(1)∠猜測BOF=120°;

(2)∵四邊形ABCD為等腰梯形,∠C=60°,
又∵AD=CD=AB,DE=CF,
∴AE=DF,
在△ABE和△DAF中,
AB=AD
∠BAE=∠ADF
AE=DF
,
∴△ABE≌△DAF,
∴∠BOF=∠ABO+∠OAB=∠DAF+∠OAB=∠EAB,
又∵∠EAB=120°,
∴∠BOF=120°.
點評:本題考查等腰梯形的性質及全等三角形的判定與性質,難度適中,解題關鍵是找出關系∠BDF=∠ABO+∠OAB=∠DAF+∠OAB=∠EAB.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、在等腰梯形ABCD中,AD∥BC,AD=3cm,AB=4cm,∠B=60°,則下底BC的長為
7
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、如圖所示,在等腰梯形ABCD中,AD∥BC,AB=CD,點P為BC邊上任意一點,且
PE⊥AB,PF⊥CD,BG⊥CD,垂足分別是E、F、G,請你探索PE、PF、BG的長度之間的關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點E為邊BC上一點,且AE=DC.
(1)求證:四邊形AECD是平行四邊形;
(2)當∠B=2∠DCA時,求證:四邊形AECD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AD∥BC,M是AD的中點,MB=MC嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,垂足為O,過D作DE∥AC交BC的延長線于E.
(1)求證:四邊形ACED是平行四邊形;
(2)若AD=4,BC=8,求梯形ABCD的面積.

查看答案和解析>>

同步練習冊答案