如圖1,平面之間坐標系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動,點C的坐標為(t,0),直角邊AC=4,經過O,C兩點做拋物線y1=ax(x﹣t)(a為常數,a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數,k>0)
(1)填空:用含t的代數式表示點A的坐標及k的值:A (t,4) ,k=。╧>0) ;
(2)隨著三角板的滑動,當a=時:
①請你驗證:拋物線y1=ax(x﹣t)的頂點在函數y=的圖象上;
②當三角板滑至點E為AB的中點時,求t的值;
(3)直線OA與拋物線的另一個交點為點D,當t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當x≥t+4時,|y2﹣y1|的值隨x的增大而增大,求a與t的關系式及t的取值范圍.
考點:
二次函數綜合題.
分析:
(1)根據題意易得點A的橫坐標與點C的相同,點A的縱坐標即是線段AC的長度;把點A的坐標代入直線OA的解析式來求k的值;
(2)①求得拋物線y1的頂點坐標,然后把該坐標代入函數y=,若該點滿足函數解析式y=
,即表示該頂點在函數y=
圖象上;反之,該頂點不在函數y=
圖象上;
②如圖1,過點E作EK⊥x軸于點K.則EK是△ACB的中位線,所以根據三角形中位線定理易求點E的坐標,把點E的坐標代入拋物線y1=x(x﹣t)即可求得t=2;
(3)如圖2,根據拋物線與直線相交可以求得點D橫坐標是+4.則t+4=
+4,由此可以求得a與t的關系式.
解答:
解:(1)∵點C的坐標為(t,0),直角邊AC=4,
∴點A的坐標是(t,4).
又∵直線OA:y2=kx(k為常數,k>0),
∴4=kt,則k=(k>0).
(2)①當a=時,y1=x(x﹣t),其頂點坐標為(,﹣).
對于y=來說,當x=時,y=
×
=﹣
,即點(,﹣
)在拋物線y=
上.
故當a=時,拋物線y1=ax(x﹣t)的頂點在函數y=的圖象上;
②如圖1,過點E作EK⊥x軸于點K.
∵AC⊥x軸,
∴AC∥EK.
∵點E是線段AB的中點,
∴K為BC的中點,
∴EK是△ACB的中位線,
∴EK=AC=2,CK=BC=2,
∴E(t+2,2).
∵點E在拋物線y1=x(x﹣t)上,
∴(t+2)(t+2﹣t)=2,
解得t=2.
(3)如圖2,,則x=ax(x﹣t),
解得x=+4,或x=0(不合題意,舍去)..
故點D的橫坐標是+t.
當x=+t時,|y2﹣y1|=0,由題意得t+4=
+t,
解得a=(t>0).
點評:
本題考查了坐標與圖形的性質、二次函數圖象上點的坐標特征、一次函數與二次函數交點坐標等知識點.解題時,注意“數形結合”數學思想的應用.
科目:初中數學 來源:2013年湖北省宜昌市高級中等學校招生考試數學 題型:044
如圖1,平面之間坐標系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動,點C的坐標為(t,0),直角邊AC=4,經過O,C兩點做拋物線y1=ax(x-t)(a為常數,a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數,k>0)
(1)填空:用含t的代數式表示點A的坐標及k的值:A________,k=________;
(2)隨著三角板的滑動,當a=時:
①請你驗證:拋物線y1=ax(x-t)的頂點在函數y=-x2的圖象上;
②當三角板滑至點E為AB的中點時,求t的值;
(3)直線OA與拋物線的另一個交點為點D,當t≤x≤t+4,|y2-y1|的值隨x的增大而減小,當x≥t+4時,|y2-y1|的值隨x的增大而增大,求a與t的關系式及t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源:2013年初中畢業(yè)升學考試(湖北宜昌卷)數學(解析版) 題型:解答題
如圖1,平面之間坐標系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動,點C的坐標為(t,0),直角邊AC=4,經過O,C兩點做拋物線(a為常數,a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數,k>0)
(1)填空:用含t的代數式表示點A的坐標及k的值:A ,k= ;
(2)隨著三角板的滑動,當a=時:
①請你驗證:拋物線的頂點在函數
的圖象上;
②當三角板滑至點E為AB的中點時,求t的值;
(3)直線OA與拋物線的另一個交點為點D,當t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當x≥t+4時,|y2﹣y1|的值隨x的增大而增大,求a與t的關系式及t的取值范圍.
查看答案和解析>>
科目:初中數學 來源:2013年湖北省宜昌市中考數學試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com