【題目】如圖,已知,
,以
為直徑的圓交
于點
,過點
的⊙
的切線交
于點
若
,則⊙
的半徑是( )
A.B.
C.
D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,
,
,
,點
為射線
上一動點(點
不與點
重合).
(1)為何值時,
最短,求出此時
的最小值;
(2)為何值時,
,說明理由;
(3)當(dāng)的一個頂點與其內(nèi)心、外心在同一條直線時,直接寫出
的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在中,
,點
是
的中點,連結(jié)
并延長,與
的延長線相交于點
,連結(jié)
.若
,
,則四邊形
的面積是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,B=90°,以點A為圓心任意長為半徑畫弧,與AB,AC分別交于點M,N,分別以點M,N為圓心大于長為半徑畫弧,兩弧交于點P,且點P剛好落在邊BC上,AB=10cm,下列說法中:
①AB=AD;②AP平分∠BAC;③△PDC的周長是;④AN=ND;
正確的是( ).
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是∠BAC的平分線,DE平行AB交AC于點E,DF平行AC交AB于點F,延長FE交BC的延長線于點G.
求證:
(1)AG=DG;
(2)∠GAC=∠B.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=BC=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF.
(1)若∠ADC=80°,求∠ECF;
(2)求證:∠ECF=∠CEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對折矩形紙片使
與
重合,得到折痕
,再把紙片展平.
是
上一點,將
沿
折疊,使點
的對應(yīng)點
落在
上.若
,則
的長是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c(c>0)的頂點為D,與y軸的交點為C.過點C的直線CA與拋物線交于另一點A(點A在對稱軸左側(cè)),點B在AC的延長線上,連結(jié)OA,OB,DA和DB.
(1)如圖1,當(dāng)AC∥x軸時,
①已知點A的坐標(biāo)是(﹣2,1),求拋物線的解析式;
②若四邊形AOBD是平行四邊形,求證:b2=4c.
(2)如圖2,若b=﹣2,=
,是否存在這樣的點A,使四邊形AOBD是平行四邊形?若存在,求出點A的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“切實減輕學(xué)生課業(yè)負擔(dān)”是我市作業(yè)改革的一項重要舉措.某中學(xué)為了解本校學(xué)生平均每天的課外作業(yè)時間,隨機抽取部分學(xué)生進行問卷調(diào)查,并將調(diào)查結(jié)果分為A、B、C、D四個等級,A:1小時以內(nèi);B:1小時--1.5小時;C:1.5小時--2小時;D:2小時以上.根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩種不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:
(1)該校共調(diào)查了多少名學(xué)生?
(2)請將條形統(tǒng)計圖補充完整;
(3)在此次調(diào)查問卷中,甲、乙兩班各有2人平均每天課外作業(yè)量都是2小時以上,從這4人中人選2人去參加座談,用列表或畫樹狀圖的方法求選出的2人來自不同班級的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com