【題目】問題探究
(1)請在圖①的的邊
上求作一點
,使
最短;
(2)如圖②,點為
內(nèi)部一點,且滿足
.求證:點
到點
、
、
的距離之和最短,即
最短;
問題解決
(3)如圖③,某高校有一塊邊長為400米的正方形草坪,現(xiàn)準備在草坪內(nèi)放置一對石凳及垃圾箱在
點處,使點
到
、
、
三點的距離之和最小,那么是否存在符合條件的點
?若存在,請作出點
的位置,并求出這個最短距離;若不存在,請說明理由.
【答案】(1)見解析;(2)證明見解析;(3)存在,作圖見解析;點到
三點的距離之和最小值為
米.
【解析】
(1)根據(jù)垂線段最短、利用尺規(guī)作圖作出點P;
(2)將繞點
逆時針旋轉(zhuǎn)
,得到
,將
繞點
逆時針旋轉(zhuǎn)
,得到
,連接
,
,
,根據(jù)作圖可知
和
均為等邊三角形,連接
,根據(jù)兩點之間線段最短可知,當
時,
短,
(3)以BC為邊作正△BCD,使點D與點A在BC兩側(cè),作△BCD的外接圓,連接AD交圓于P,連接PB,作DE⊥AC交AC的延長線于E,根據(jù)勾股定理、直角三角形的性質(zhì)計算,得到答案.
解:(1)如圖①,過點作
的垂線,
垂足為,點
記為所求;
(2)如圖②,將繞點
逆時針旋轉(zhuǎn)
,得到
,
將繞點
逆時針旋轉(zhuǎn)
,得到
,
連接,
,
,
根據(jù)作圖可知和
均為等邊三角形,
∴,
,
,
∴,
∴,
∴,
∴,
∴,
連接,根據(jù)兩點之間線段最短可知,
當時,
最短,
∵,
∴,
又∵為等邊三角形,
∴四點共線,
∴,
∴當時,
最短;
(3)存在符合條件的點.
如解圖③,以為作等邊
,在作
的外接圓
,
連接,交
于點
,
此時最小,
在上截取
.
∵在等邊中,
∴(同弧所對的圓周角相等)
∴為等邊三角形,
∴.
∴.
∴.
又∵,
,
∴,
∴,
∴最。
理由如下:
設點為正方形
內(nèi)任意一點,
連接,
、
,
將繞點
順時針旋轉(zhuǎn)
得到
.
∵,
∴為
的最短距離.
在中,
,
米,
∴(米),
(米),
∴(米).
在中,
.
∴點到
三點的距離之和最小值為
米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點的坐標是(-1,0),點
的坐標是(0,6),
為
的中點,將
繞點
逆時針旋轉(zhuǎn)90°.后得到
.若反比例函數(shù)
的圖像恰好經(jīng)過
的中點
,則k的值是( )
A.19B.16.5C.14D.11.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線分別交
軸、
軸于點
,交直線
于點
.動點
在直線
上以每秒
個單位的速度從點
向終點
運動,同時,動點
以每秒
個單位的速度從點
沿
的方向運動,當點
到達終點
時,點
同時停止運動.設運動時間為
秒.
(1)求點的坐標和
的長.
(2)當時,線段
交
于點
且
求
的值.
(3)在點的整個運動過程中,
①直接用含的代數(shù)式表示點
的坐標.
②利用(2)的結(jié)論,以為直角頂點作等腰直角
(點
按逆時針順序排列).當
與
的一邊平行時,求所有滿足條件的
的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】全球已經(jīng)進入大數(shù)據(jù)時代,大數(shù)據(jù)(bigdata)是指數(shù)據(jù)規(guī)模巨大,類型多樣且信息傳播速度快的數(shù)據(jù)庫體系.大數(shù)據(jù)在推動經(jīng)濟發(fā)展,改善公共服務等方面日益顯示出巨大的價值.為創(chuàng)建大數(shù)據(jù)應用示范城市,我市某機構(gòu)針對市民最關(guān)心的四類生活信息進行了民意調(diào)查(被調(diào)查者每人限選一項),下面是根據(jù)調(diào)查結(jié)果繪制出不完整的兩個統(tǒng)計圖表:
請根據(jù)圖中提供的信息,解答下列問題:
(1)本次參與調(diào)查的人數(shù)是________,扇形統(tǒng)計圖中部分的圓心角的度數(shù)是________,并補全條形統(tǒng)計圖;
(2)這次調(diào)查的市民最關(guān)心的四類生活信息的眾數(shù)是________類;
(3)若我市現(xiàn)有常住人口約600萬,請你估計最關(guān)心“城市醫(yī)療信息”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的方程ax2+2x﹣3=0有兩個不相等的實數(shù)根.
(1)求a的取值范圍;
(2)若此方程的一個實數(shù)根為1,求a的值及方程的另一個實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=3,M是CD邊上一動點(不與D點重合),點D與點E關(guān)于AM所在的直線對稱,連接AE,ME,延長CB到點F,使得BF=DM,連接EF,AF.
(1)依題意補全圖1;
(2)若DM=1,求線段EF的長;
(3)當點M在CD邊上運動時,能使△AEF為等腰三角形,直接寫出此時tan∠DAM的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1) ,將一個正六邊形各邊延長,構(gòu)成一個正六角星形AFBDCE,它的面積為1,取△ABC和△DEF各邊中點,連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和1D1E1F1各邊中點,連接成正六角星形A2F2B2D2C2E 2F 2,如圖(3) 中陰影部分;如此下去…,則正六角星形AnFnBnDnCnE nF n的面積為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,∠ACB=90°,過點D作DE⊥BC交BC的延長線于點E.
(1)求證:四邊形ACED是矩形;
(2)連接AE交CD于點F,連接BF.若∠ABC=60°,CE=2,求BF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com