【題目】如圖,在平面直角坐標(biāo)系中,拋物線交
軸于
,
兩點(diǎn),交
軸于點(diǎn)
,且
,點(diǎn)
是第三象限內(nèi)拋物線上的一動(dòng)點(diǎn).
(1)求此拋物線的表達(dá)式;
(2)若,求點(diǎn)
的坐標(biāo);
(3)連接,求
面積的最大值及此時(shí)點(diǎn)
的坐標(biāo).
【答案】(1);(2)(
,
);(3)
面積的最大值是8;點(diǎn)
的坐標(biāo)為(
,
).
【解析】
(1)由二次函數(shù)的性質(zhì),求出點(diǎn)C的坐標(biāo),然后得到點(diǎn)A、點(diǎn)B的坐標(biāo),再求出解析式即可;
(2)由,則點(diǎn)P的縱坐標(biāo)為
,代入解析式,即可求出點(diǎn)P的坐標(biāo);
(3)先求出直線AC的解析式,過(guò)點(diǎn)P作PD∥y軸,交AC于點(diǎn)D,則,設(shè)點(diǎn)P為(
,
),則點(diǎn)D為(
,
),求出PD的長(zhǎng)度,利用二次函數(shù)的性質(zhì),即可得到面積的最大值,再求出點(diǎn)P的坐標(biāo)即可.
解:(1)在拋物線中,
令,則
,
∴點(diǎn)C的坐標(biāo)為(0,),
∴OC=2,
∵,
∴,
,
∴點(diǎn)A為(,0),點(diǎn)B為(
,0),
則把點(diǎn)A、B代入解析式,得
,解得:
,
∴;
(2)由題意,∵,點(diǎn)C為(0,
),
∴點(diǎn)P的縱坐標(biāo)為,
令,則
,
解得:,
,
∴點(diǎn)P的坐標(biāo)為(,
);
(3)設(shè)直線AC的解析式為,則
把點(diǎn)A、C代入,得
,解得:
,
∴直線AC的解析式為;
過(guò)點(diǎn)P作PD∥y軸,交AC于點(diǎn)D,如圖:
設(shè)點(diǎn)P 為(,
),則點(diǎn)D為(
,
),
∴,
∵OA=4,
∴,
∴,
∴當(dāng)時(shí),
取最大值8;
∴,
∴點(diǎn)P的坐標(biāo)為(,
).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知:函數(shù).
(1)當(dāng)時(shí),
①求隨
增大而增大時(shí),
的取值范圍;
②當(dāng)時(shí),求
的取值范圍;
③當(dāng)時(shí),設(shè)
的最大值與最小值之差為
,當(dāng)
時(shí),求
的值.
(2)若,連結(jié)
.當(dāng)此函數(shù)的圖象與線段
只有兩個(gè)公共點(diǎn)時(shí),直接寫出
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是正方形,點(diǎn)
為對(duì)角線
的中點(diǎn).
(1)問(wèn)題解決:如圖①,連接,分別取
,
的中點(diǎn)
,
,連接
,則
與
的數(shù)量關(guān)系是_____,位置關(guān)系是____;
(2)問(wèn)題探究:如圖②,是將圖①中的
繞點(diǎn)
按順時(shí)針?lè)较蛐D(zhuǎn)
得到的三角形,連接
,點(diǎn)
,
分別為
,
的中點(diǎn),連接
,
.判斷
的形狀,并證明你的結(jié)論;
(3)拓展延伸:如圖③,是將圖①中的
繞點(diǎn)
按逆時(shí)針?lè)较蛐D(zhuǎn)
得到的三角形,連接
,點(diǎn)
,
分別為
,
的中點(diǎn),連接
,
.若正方形
的邊長(zhǎng)為1,求
的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,拋物線與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,點(diǎn)M為拋物線的頂點(diǎn).
(1)求點(diǎn)C及頂點(diǎn)M的坐標(biāo).
(2)若點(diǎn)N是第四象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),連接求
面積的最大值及此時(shí)點(diǎn)N的坐標(biāo).
(3)若點(diǎn)D是拋物線對(duì)稱軸上的動(dòng)點(diǎn),點(diǎn)G是拋物線上的動(dòng)點(diǎn),是否存在以點(diǎn)B、C、D、G為頂點(diǎn)的四邊形是平行四邊形.若存在,求出點(diǎn)G的坐標(biāo);若不存在,試說(shuō)明理由.
(4)直線CM交x軸于點(diǎn)E,若點(diǎn)P是線段EM上的一個(gè)動(dòng)點(diǎn),是否存在以點(diǎn)P、E、O為頂點(diǎn)的三角形與相似.若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①是甘肅省博物館的鎮(zhèn)館之寶——銅奔馬,又稱“馬踏飛燕”,于1969年10月出土于武威市的雷臺(tái)漢墓,1983年10月被國(guó)家旅游局確定為中國(guó)旅游標(biāo)志,在很多旅游城市的廣場(chǎng)上都有“馬踏飛燕”雕塑,某學(xué)習(xí)小組把測(cè)量本城市廣場(chǎng)的“馬踏飛燕”雕塑(圖②)最高點(diǎn)離地面的高度作為一次課題活動(dòng),同學(xué)們制定了測(cè)量方案,并完成了實(shí)地測(cè)量,測(cè)得結(jié)果如下表:
課題 | 測(cè)量“馬踏飛燕”雕塑最高點(diǎn)離地面的高度 | |||
測(cè)量示意圖 | 如圖,雕塑的最高點(diǎn) | |||
測(cè)量數(shù)據(jù) |
|
|
| 儀器 |
5米 |
|
請(qǐng)你根據(jù)上表中的測(cè)量數(shù)據(jù),幫助該小組求出“馬踏飛燕”雕塑最高點(diǎn)離地面的高度(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,
,
,
,
,
)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,關(guān)于
的二次函數(shù)
的圖象過(guò)點(diǎn)
,
.
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)求當(dāng)時(shí),
的最大值與最小值的差;
(3)一次函數(shù)的圖象與二次函數(shù)
的圖象交點(diǎn)的橫坐標(biāo)分別是
和
,且
,求
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】房山某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.小華與小明同學(xué)就“最喜歡哪種學(xué)習(xí)方式”隨機(jī)調(diào)查了他們周圍的一些同學(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下的兩個(gè)統(tǒng)計(jì)圖.請(qǐng)根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下問(wèn)題:
(1)這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校1000名學(xué)生中大約有多少人選擇“小組合作學(xué)習(xí)”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與
軸交于點(diǎn)
,與
軸交于點(diǎn)
.點(diǎn)
是該直線上不同于
的點(diǎn),且
.
(1)寫出、
兩點(diǎn)的坐標(biāo);
(2)過(guò)動(dòng)點(diǎn)且垂直于
軸的直線與直線
交于點(diǎn)
,若點(diǎn)
不在線段
上,求
的取值范圍;
(3)若直線與直線
所夾銳角為
,請(qǐng)直接寫出直線
的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長(zhǎng)為2.50米,籃板頂端F點(diǎn)到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,
≈1.414)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com