【題目】如圖,在△ABC中,AB=AC=5,BC=4,D為邊AB上一動點(diǎn)(B點(diǎn)除外),以CD為一邊作正方形CDEF,連接BE,則△BDE面積的最大值為______.
【答案】8
【解析】
如圖,過點(diǎn)A作AH⊥BC于H,過點(diǎn)E作EM⊥AB于M,過點(diǎn)C作CN⊥AB于N,根據(jù)等腰三角形的性質(zhì)以及三角形的面積可求出CN=4,繼而根據(jù)勾股定理求出AN=3,從而求得BN的長,然后證明△EDM≌△DCN,根據(jù)全等三角形的性質(zhì)可得EM=DN,設(shè)BD=x,則DN=8-x,繼而根據(jù)三角形的面積公式可得S△BDE=,根據(jù)二次函數(shù)的性質(zhì)即可求得答案.
如圖,過點(diǎn)A作AH⊥BC于H,過點(diǎn)E作EM⊥AB于M,過點(diǎn)C作CN⊥AB于N,
∵AB=AC=5,BC=4,AH⊥BC,
∴BH=BC=2
,
∴AH==
,
∵S△ABC=,
即,
∴CN=4,
在Rt△CAN中,∠ANC=90°,∴AN==3,
∴BN=BA+AN=8,
∵四邊形CDEF是正方形,
∴∠EDM+∠CDN=∠EDC=90°,ED=CD,
∵∠CDN+∠NCD=90°,
∴∠EDM=∠DCN,
又∵∠EMD=∠DNC=90°,
∴△EDM≌△DCN,
∴EM=DN,
設(shè)BD=x,則DN=8-x,
∴S△BDE==
=
,
∵,
∴S△BDE的最大值為8,
故答案為:8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于的一元二次方程
有兩個不相等的實(shí)數(shù)根,且其中一個根為另一個根的一半,則稱這樣的方程為“半等分根方程”.
(1)①方程 半等分根方程(填“是”或“不是”);
②若是半等分根方程,則代數(shù)式
;
(2)若點(diǎn)在反比例函數(shù)
的圖象上,則關(guān)于
的方程
是半等分根方程嗎?并說明理由;
(3)如果方程是半等分根方程,且相異兩點(diǎn)
,
都在拋物線
上,試說明方程
的一個根為
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形中,
的圓心
從點(diǎn)
開始沿折線
以
的速度向點(diǎn)
運(yùn)動,
的圓心
從點(diǎn)
開始沿
邊以
的速度向點(diǎn)
運(yùn)動,
半徑為
的半徑為
,若
分別從點(diǎn)
、點(diǎn)
同時出發(fā),運(yùn)動的時間為
(1)請求出與腰
相切時
的值;
(2)在范圍內(nèi),當(dāng)
為何值時,
與
外切?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.
(1)梯形ABCD的面積等于 .
(2)如圖1,動點(diǎn)P從D點(diǎn)出發(fā)沿DC以DC以每秒1個單位的速度向終點(diǎn)C運(yùn)動,動點(diǎn)Q從C點(diǎn)出發(fā)沿CB以每秒2個單位的速度向B點(diǎn)運(yùn)動.兩點(diǎn)同時出發(fā),當(dāng)P點(diǎn)到達(dá)C點(diǎn)時,Q點(diǎn)隨之停止運(yùn)動.當(dāng)PQ∥AB時,P點(diǎn)離開D點(diǎn)多少時間?
(3)如圖2,點(diǎn)K是線段AD上的點(diǎn),M、N為邊BC上的點(diǎn),BM=CN=5,連接AN、DM,分別交BK、CK于點(diǎn)E、F,記△ ADG和△ BKC重疊部分的面積為S,求S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,以
為直徑的
,交
于點(diǎn)
,且
交直線
于點(diǎn)
,連接
.
如圖1,求證:
;
如圖2,
為鈍角時,過點(diǎn)
作
于點(diǎn)
求證:
;
如圖3,在
的條件下,在∠BDF的內(nèi)部作
,使
分別交
于點(diǎn)
交
于點(diǎn)
,若
,求
的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=8,AD=10,E是CD邊上一點(diǎn),連接AE,將矩形ABCD沿AE折疊,頂點(diǎn)D恰好落在BC邊上點(diǎn)F處,延長AE交BC的延長線于點(diǎn)G.
(1)求線段CE的長;
(2)如圖2,M,N分別是線段AG,DG上的動點(diǎn)(與端點(diǎn)不重合),且∠DMN=∠DAM,設(shè)AM=x,DN=y.
①寫出y關(guān)于x的函數(shù)解析式,并求出y的最小值;
②是否存在這樣的點(diǎn)M,使△DMN是等腰三角形?若存在,請求出x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑是2,點(diǎn)A、B、C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為( 。
A. π﹣2
B.
π﹣
C.
π﹣2
D.
π﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七巧板是我國祖先的一項(xiàng)卓越創(chuàng)造,如圖正方形ABCD可以制作一副七巧板,現(xiàn)將這副七巧板拼成如圖2的“風(fēng)車”造型(內(nèi)部有一塊空心),連結(jié)最外圍的風(fēng)車頂點(diǎn)M、N、P、Q得到一個四邊形MNPQ,則正方形ABCD與四邊形MNPQ的面積之比為( 。
A.5:8B.3:5C.8:13D.25:49
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),小李同學(xué)對該函數(shù)的圖象與性質(zhì)進(jìn)行了探究,下面是小李同學(xué)探究的過程,補(bǔ)充完整:
(1)直接寫出自變量x的取值范圍:__________;
(2)下表是y與x的幾組對應(yīng)值:
x | … | -4 | -1 | 0 | 1 | 3 | 4 | 5 | n | … | ||||
y | … | m | 0 | -1 | -4 | 8 | 5 | 4 | 3 | … |
則m= ,n= ;
(3)如圖所示,在平面直角坐標(biāo)系xoy中,描出以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),并根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)觀察函數(shù)圖象可知:該函數(shù)圖象的對稱中心的坐標(biāo)是______;
(5)當(dāng)時,關(guān)于x的方程
有實(shí)數(shù)解,直接寫出k的取值范圍_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com