【題目】如圖,在平面直角坐標系中,已知Rt△ABC中,∠C=90°,AC=4,BC=3,點A(6,5),B(2,8),反比例函數(shù)y過點C,過點A作AD∥y軸交雙曲線于點D.
(1)求反比例函數(shù)y的解析式;
(2)動點P在y軸正半軸運動,當線段PC與線段PD的差最大時,求P點的坐標;
(3)將Rt△ABC沿直線CO方向平移,使點C移動到點O,求線段AB掃過的面積.
【答案】(1)y= (x>0);(2)26.
【解析】分析:(1)根據(jù)平行關系確定出C的坐標,然后利用待定系數(shù)法求出函數(shù)的解析式,并根據(jù)圖像表示出取值范圍;
(2)根據(jù)題意判斷出:當P、C、D三點共線時,線段PC與線段PD的差最大,求出D點的坐標,利用待定系數(shù)法,由C、D的坐標求解即可;
(3)根據(jù)平移的性質得到對應點的位置,利用分割法求出圖形的面積即可.
詳解:(1)設C(x,y)
由于AC∥x軸,BC∥x軸
得x=2,y=5即 C(2.5)
將C點代入y= 得 k=10
則反比例函數(shù)為 y= (x>0)
(2)當P、C、D三點共線時,線段PC與線段PD的差最大
設 D(6,a)
代入y=得a=
所以D(6,
)
設直線CD為y=kx+b, P(0,c)
將C(2.5),D(6,)帶入得
解得:
∴y=-x+
將P(0,c)代入得c=
即P(0,)
(3)如圖所示
由題意可得點C移到點O;點B移到點B1(0,3);點A移到點A1 (4,0)
∴四邊形B B1 OC,四邊形A A1 OC與四邊形B B1 A1 A都是平行四邊形
在五邊形B B1 OA1 A中有
S△ABC + SB B1 OC + SA A1 OC = S△O B1 A1 + SB B1 A1 A
∴ ×3×4+3×2+4×5 =
×3×4 + SB B1 A1 A
SB B1 A1 A = 26
即線段AB掃過的面積為26.
科目:初中數(shù)學 來源: 題型:
【題目】一個四位數(shù),記千位上和百位上的數(shù)字之和為,十位上和個位上的數(shù)字之和為
,如果
,那么稱這個四位數(shù)為“和平數(shù)”.例如:1423,
,
,因為
,所以1423是“和平數(shù)”.
(1)直接寫出:最小的“和平數(shù)”是_________________,最大的“和平數(shù)”是_______________;
(2)求個位上的數(shù)字是千位上的數(shù)字的兩倍且百位上的數(shù)字與十位上的數(shù)字之和是12的倍數(shù)的所有“和平數(shù)”.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形網(wǎng)格(邊長為1的小正方形組成的網(wǎng)格紙,正方形的頂點稱為格點)是我們在初中階段常用的工具,利用它可以解決很多問題.
(1)如圖①中,△ABC是格點三角形(三個頂點為格點),則它的面積為 ;
(2)如圖②,在4×4網(wǎng)格中作出以A為頂點,且面積最大的格點正方形(四個頂點均為格點);
(3)人們發(fā)現(xiàn),記格點多邊形(頂點均為格點)內(nèi)的格點數(shù)為a,邊界上的格點數(shù)為b,則格點多邊形的面積可表示為S=ma+nb-1,其中m,n為常數(shù).試確定m,n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點O為直線AB上一點,過點O作射線OC,使∠BOC=65°,將一直角三角板的直角頂點放在點O處.
(1)如圖①,將三角板MON的一邊ON與射線OB重合時,則∠MOC= ;
(2)如圖②,將三角板MON繞點O逆時針旋轉一定角度,此時OC是∠MOB的角平分線,求旋轉角∠BON和∠CON的度數(shù);
(3)將三角板MON繞點O逆時針旋轉至圖③時,∠NOC=∠AOM,求∠NOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面上有四個點A,B,C,D.
(1)根據(jù)下列語句畫圖:
①畫射線BA;連接BD;
②畫直線AD、BC相交于點E;
③在線段DC的延長線上取一點F,使CF=BC,連接EF;
(2)點B與直線AD的關系是 ;
(3)圖中以E為頂點的角中,小于平角的角共有 個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù) yl= x ( x ≥0 ) , ( x > 0 )的圖象如圖所示,則結論: ① 兩函數(shù)圖象的交點A的坐標為(3 ,3 ) ② 當 x > 3
時, ③ 當 x =1時, BC = 8
④ 當 x 逐漸增大時, yl 隨著 x 的增大而增大,y2隨著 x 的增大而減。渲姓_結論的序號是_ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一只紙箱中裝有除顏色外完全相同的紅色、黃色、藍色乒乓球共100個.從紙箱中任意摸出一球,摸到紅色球、黃色球的概率分別是0.2、0.3.
(1)試求出紙箱中藍色球的個數(shù);
(2)小明向紙箱中再放進紅色球若干個,小麗為了估計放入的紅球的個數(shù),她將箱子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回箱子中,多次重復上述過程后,她發(fā)現(xiàn)摸到紅球的頻率在0.5附近波動,請據(jù)此估計小明放入的紅球的個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD上一點,PQ垂直平分BE,分別交AD、BE、BC于點P、O、Q,連接BP、EQ.
(1)求證:四邊形BPEQ是菱形;
(2)若AB=6,F(xiàn)為AB的中點,OF+OB=9,求PQ的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com