【題目】如圖,在平面直角坐標系中,點A的坐標是(2,1),點B的坐標是(2,0) .作點B關于OA的對稱點B′,則點B′的坐標是______.
【答案】()
【解析】
連接AB,AB′,BB′,BB′與OA相交于點F,過B′作B′E⊥x軸,垂足為E,由勾股定理求出OA=,再由三角形面積公式可求出BF=
, 由對稱性得出BB′=
,再證明
得B′E=
,再由勾股定理求出BE=
,從而可求出OE=
,故可得答案.
連接AB,AB′,BB′,BB′與OA相交于點F,過B′作B′E⊥x軸,垂足為E,如圖所示,
∵點A的坐標是(2,1),點B的坐標是(2,0) ,
∴OB=2,AB=1,AB⊥OB,
∴AB=
∵
∴
∴
∵點B與點B′關于OA的對稱,
∴OA⊥BB′, BB′=2BF=,
又∵B′E⊥x軸,AB⊥OB,
∴B′E//AB
∴∠ABB′=∠BB′E,∠B′EB=∠BFA=90°
∴
∴
∴
∴
∴OE=OB-BE=2-=
∴點B′的坐標為(,
).
故答案為:(,
).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形OABC的邊OA在x軸上,AC與OB交于點D (8,4),反比例函數(shù)y=的圖象經(jīng)過點D.若將菱形OABC向左平移n個單位,使點C落在該反比例函數(shù)圖象上,則n的值為 2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰直角三角形的直角頂點
在
軸的正半軸上,
,將
繞頂點
順時針旋轉
至
,使點
落在雙曲線
的圖象上,則
________,該雙曲線的函數(shù)解析式為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB是⊙O的直徑,AC是⊙O的切線,∠ABC=52°,BC交⊙O于點D,E是AB上一點,延長DE交⊙O于點F.
(Ⅰ)如圖①,連接BF,求∠C和∠DFB的大;
(Ⅱ)如圖②,當DB=DE時,求∠OFD的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著通訊技術的迅猛發(fā)展,人與人之間的溝通方式變得更多樣、便捷.某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調查問卷(每人必選且只選一種),在全校范圍內隨機調查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息回答下列問題:
(1)本次調查共調查了______名學生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為______;
(2)將條形統(tǒng)計圖補充完整;
(3)該校共有1500名學生,請估計該校最喜歡用“微信”溝通的學生有多少名?
(4)某天甲、乙兩名同學都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學恰好選擇同一種溝通方式的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在矩形ABCD中,AB=6,BC=9,點E是BC邊上一動點,連接AE、DE ,作△ECD的外接⊙O,交AD于點F,交AE于點G,連接FG.
(1)求證△AFG∽△AED;
(2)當BE的長為 時,△AFG為等腰三角形;
(3)如圖②,若BE=1,求證:AB與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級數(shù)學興趣小組在研究等腰直角三角形與圖形變換時,作了如下研究:在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為腰作等腰直角三角形DAF,使∠DAF=90°,連接CF.
(1)觀察猜想
如圖1,當點D在線段BC上時,
①CF與BC的位置關系為 ;
②CF,DC,BC之間的數(shù)量關系為 (直接寫出結論);
(2)數(shù)學思考
如圖2,當點D在線段CB的延長線上時,(1)中的①、②結論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明.
(3)拓展延伸
如圖3,當點D在線段BC的延長線上時,將△DAF沿線段DF翻折,使點A與點E重合,連接CE,若已知4CD=BC,AC=2,請求出線段CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,矩形的頂點
(1,0),
(0,2),點
在第一象限,
∥
軸,若函數(shù)
=
的圖象經(jīng)過矩形
的對角線的交點,則
的值為( )
A.4B.5C.8D.10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在學習“軸對稱現(xiàn)象”內容時,老師讓同學們尋找身邊的軸對稱圖形,小明利用手中的一副三角尺和一個量角器(如圖所示)進行探究.
(1)小明在這三件文具中任取一件,結果是軸對稱圖形的概率是_________;(取三件中任意一件的可能性相同)
(2)小明發(fā)現(xiàn)在、
兩把三角尺中各選一個角拼在一起(無重疊無縫隙)會得到一個更大的角,若每個角選取的可能性相同,請用畫樹狀圖或列表的方法說明拼成的角是鈍角的概率是多少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com