【題目】使得函數(shù)值為零的自變量的值稱為函數(shù)的零點.例如,對于函數(shù)y=x-1,令y=0可得x=1,我們就說1是函數(shù)y=x-1的零點.
已知y=x2-2mx-2(m+3)(m為常數(shù)).
(1)當m=0時,求該函數(shù)的零點;
(2)證明:無論m取何值,該函數(shù)總有兩個零點;
(3)設函數(shù)的兩個零點分別為x1和x2,且,此時函數(shù)圖象與x軸的交點分別為A,B(點A在點B左側),點M在直線y=x-10上,當MA+MB最小時,求直線AM的函數(shù)表達式.
【答案】(1)或-
(2)y=-
x-1
【解析】試題分析:(1)根據(jù)題中給出的函數(shù)的零點的定義,將m=0代入y=x2-2mx-2(m+3),然后令y=0即可解得函數(shù)的零點;
(2)令y=0,函數(shù)變?yōu)橐辉畏匠,要想證明方程有兩個解,只需證明△>0即可;
(3)根據(jù)題中條件求出函數(shù)解析式進而求得A、B兩點坐標,個、作點B關于直線y=x-10的對稱點B′,連接AB′,求出點B′的坐標即可求得當MA+MB最小時,直線AM的函數(shù)解析式.
試題解析:(1)當=0時,該函數(shù)為
,令
=0,可得
,
∴當=0時,求該函數(shù)的零點為
和
。
(2)令=0,得△=
,
∴無論取何值,方程
總有兩個不相等的實數(shù)根。
即無論取何值,該函數(shù)總有兩個零點
(3)依題意有,
由得
,即
,解得
。
∴函數(shù)的解析式為令
=0,解得
。
∵點A在點B左側,∴A(),B(4,0)。
作點B關于直線的對稱點B’,連結AB’,則AB’與直線
的交點就是滿足條件的M點。易求得直線
與
軸、
軸的交點分別為C(10,0),D(0,10)。Z.X.X.K]
連結CB’,則∠BCD=45°,∴BC=CB’=6,∠B’CD=∠BCD=45°。
∴∠BCB’=90°,即B’()。設直線AB’的解析式為
,則Z-X-X-K]
,解得
∴直線AB’的解析式為
,
即AM的解析式為
科目:初中數(shù)學 來源: 題型:
【題目】如圖,測量人員在山腳A處測得山頂B的仰角為45°,沿著仰角為30°的山坡前進1000米到達D處,在D處測得山頂B的仰角為60°,求山的高度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:點M、P、N、Q依次是正方形ABCD的邊AB、BC、CD、DA上一點(不與正方形的頂點重合),給出如下結論:
①MN⊥PQ,則MN=PQ;
②MN=PQ,則MN⊥PQ;
③△AMQ≌△CNP,則△BMP≌△DNQ;
④△AMQ∽△CNP,則△BMP∽△DNQ
其中所有正確的結論的序號是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某中學準備在校園里利用圍墻的一段,其余三面用圍欄,圍成一個矩形花園ABCD(圍墻MN最長可利用25m).現(xiàn)計劃用50m長的圍欄,請你設計一種圍法,使矩形花園的面積為300m2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,先找到長方形紙的寬DC的中點E,將∠C過E點折起任意一個角,折痕是EF,再將∠D過E點折起,使D′E和C′E重合,折痕是GE,請?zhí)剿飨铝袉栴}:
(1)∠FEC′和∠GED′互為余角嗎?為什么?
(2)∠GEF是直角嗎?為什么?
(3)在上述折紙圖形中,還有哪些互為余角?哪些互為補角?(各寫出兩對即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,下面是按照一定規(guī)律畫出的“樹形圖”,經(jīng)觀察可以發(fā)現(xiàn):圖A2比圖A1多出2個“樹枝”,圖A3比圖A2多出4個“樹枝”,圖A4比圖A3多出8個“樹枝”,…,照此規(guī)律,圖A6比圖A2多出“樹枝”( 。
A. 32 B. 56 C. 60 D. 64
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1:y1=﹣x+2與x軸,y軸分別交于A,B兩點,點P(m,3)為直線l1上一點,另一直線l2:y2=x+b過點P.
(1)求點P坐標和b的值;
(2)若點C是直線l2與x軸的交點,動點Q從點C開始以每秒1個單位的速度向x軸正方向移動.設點Q的運動時間為t秒.
①請寫出當點Q在運動過程中,△APQ的面積S與t的函數(shù)關系式;
②求出t為多少時,△APQ的面積小于3;
③是否存在t的值,使△APQ為等腰三角形?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為緩解城市交通壓力,決定修建人行天橋,原設計天橋的樓梯長AB=6m,∠ABC=45°,后考慮到安全因素,將樓梯腳B移到CB延長線上點D處,使∠ADC=30°(如圖所示).
(結果保留根號)
(1)求調整后樓梯AD的長;
(2)求BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com