【題目】已知,點(diǎn)
在
的內(nèi)部,
,在
、
上分別取點(diǎn)
、
,使
的周長(zhǎng)最短,則
周長(zhǎng)的最小值為( )
A.4B.8C.16D.32
【答案】B
【解析】
分別作點(diǎn)P關(guān)于OA、OB的對(duì)稱(chēng)點(diǎn)P1、P2,連接P1P2,交OA于點(diǎn)M,交OB于點(diǎn)N,則此時(shí)周長(zhǎng)的最小值等于線(xiàn)段P1P2,只要證明△OP1P2為等邊三角形,即可求解.
解:如圖,分別作點(diǎn)P關(guān)于OA、OB的對(duì)稱(chēng)點(diǎn)P1、P2,連接P1P2,交OA于點(diǎn)M,交OB于點(diǎn)N,
根據(jù)軸對(duì)稱(chēng)的性質(zhì),則
OP1=OP=OP2,∠P1OA=∠POA,∠P2OB=∠POB,MP=MP1,NP=NP2,
∴△PMN的周長(zhǎng)的最小值= P1P2,
∵,
∴∠P1OP2=2∠AOB=60°,
∴△OP1P2為等邊三角形,
∴P1P2=OP1=OP2=OP=8;
故選擇:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=與y=-kx2+k(k≠0)在同一坐標(biāo)系中圖象可能是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將ABCD的AD邊延長(zhǎng)至點(diǎn)E,使DE=AD,連接CE,F是BC邊的中點(diǎn),連接FD.
(1)求證:四邊形CEDF是平行四邊形;
(2)若AB=3,AD=4,∠A=60°,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解題
(1)閱讀理解:如圖①,等邊內(nèi)有一點(diǎn)
,若點(diǎn)
到頂點(diǎn)
,
,
的距離分別為3,4,5,求
的大小.
思路點(diǎn)撥:考慮到,
,
不在一個(gè)三角形中,采用轉(zhuǎn)化與化歸的數(shù)學(xué)思想,可以將
繞頂點(diǎn)
逆時(shí)針旋轉(zhuǎn)
到
處,此時(shí)
,這樣,就可以利用全等三角形知識(shí),結(jié)合已知條件,將三條線(xiàn)段的長(zhǎng)度轉(zhuǎn)化到一個(gè)三角形中,從而求出
的度數(shù).請(qǐng)你寫(xiě)出完整的解題過(guò)程.
(2)變式拓展:請(qǐng)你利用第(1)題的解答思想方法,解答下面問(wèn)題:
已知如圖②,中,
,
,
、
為
上的點(diǎn)且
,
,
,求
的大小.
(3)能力提升:如圖③,在中,
,
,
,點(diǎn)
為
內(nèi)一點(diǎn),連接
,
,
,且
,請(qǐng)直接寫(xiě)出
的值,即
______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)長(zhǎng)為24米的籬笆,一面利用墻(墻的最大長(zhǎng)度a為15米)圍成的中間隔有一道籬笆的長(zhǎng)方形花圃.設(shè)花圃的寬AB為x米,面積為S平方米.
(1)求S與x的函數(shù)關(guān)系式;
(2)如果要使圍成花圃面積最大,求AB的長(zhǎng)為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將直角三角形的直角頂點(diǎn)放在點(diǎn)處,兩直角邊與坐標(biāo)軸交于如圖所示的點(diǎn)
和點(diǎn)
,則
的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中,
厘米,
厘米,點(diǎn)
為
的中點(diǎn).
(1)如果點(diǎn)P在線(xiàn)段BC上以3厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,與
是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等, 與
是否可能全等?若能,求出全等時(shí)點(diǎn)Q的運(yùn)動(dòng)速度和時(shí)間;若不能,請(qǐng)說(shuō)明理由.
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在
的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖在直角坐標(biāo)系中,點(diǎn)A在y軸上,BC⊥x軸于點(diǎn)C,點(diǎn)A關(guān)于直線(xiàn)OB的對(duì)稱(chēng)點(diǎn)D恰好在BC上,點(diǎn)E與點(diǎn)O關(guān)于直線(xiàn)BC對(duì)稱(chēng),∠OBC=35°,則∠OED的度數(shù)為( )
A.10°B.20°C.30°D.35°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點(diǎn)D為AB邊上的一點(diǎn).
(1)求證:△BCD≌△ACE;
(2)若AD=3,BD=4,求DE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com