8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

正m邊形,正n邊形及正p邊形各一個(gè)內(nèi)角,其和為360°,則
1
m
+
1
n
+
1
p
的值為
 
分析:根據(jù)多邊形外角和定理和多邊形內(nèi)角與外角的關(guān)系:正m邊形一個(gè)外角+正n邊形一個(gè)外角+正p邊形一個(gè)外角=3組鄰補(bǔ)角的和-(正m邊形一個(gè)內(nèi)角+正n邊形一個(gè)內(nèi)角+正p邊形一個(gè)內(nèi)角),可得
360°
m
+
360°
n
+
360°
p
=180°×3-360°,將
1
m
+
1
n
+
1
p
看作一個(gè)整體求解即可.
解答:解:根據(jù)題意可得
360°
m
+
360°
n
+
360°
p
=180°×3-360°,
360°×(
1
m
+
1
n
+
1
p
)=180°,
1
m
+
1
n
+
1
p
=
1
2

故答案為:
1
2
點(diǎn)評:本題考查了多邊形外角和定理和多邊形內(nèi)角與外角的關(guān)系,多邊形內(nèi)角與相鄰的外角互為鄰補(bǔ)角,注意整體思想的運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖1,圖形①滿足AD=AB,MD=MB,∠A=72°,∠M=144°.圖形②與圖形①恰好拼成一個(gè)菱形(如圖2).記AB的長度為a,BM的長度為b.
(1)圖形①中∠B=
 
°,圖形②中∠E=
 
°;
(2)小明有兩種紙片各若干張,其中一種紙片的形狀及大小與圖形①相同,這種紙片稱為“風(fēng)箏一號”;另一種紙片的形狀及大小與圖形②相同,這種紙片稱為“飛鏢一號”.
①小明僅用“風(fēng)箏一號”紙片拼成一個(gè)邊長為b的正十邊形,需要這種紙片
 
 張;
②小明若用若干張“風(fēng)箏一號”紙片和“飛鏢一號”紙片拼成一個(gè)“大風(fēng)箏”(如圖3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.請你在圖3中畫出拼接線并保留畫圖痕跡.(本題中均為無重疊、無縫隙拼接)
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•邯鄲一模)嘗試探究:
小張?jiān)跀?shù)學(xué)實(shí)踐活動(dòng)中,畫了一個(gè)Rt△ABC,使∠ACB=90°,BC=1,AC=2,再以B為圓心,BC為半徑畫弧交AB于點(diǎn)D,然后以A為圓心以AD長為半徑畫弧交AC于點(diǎn)E,如圖,則AE=
5
-1
5
-1
;此時(shí)小張發(fā)現(xiàn)AE2=AC•EC,請同學(xué)們驗(yàn)證小張的發(fā)現(xiàn)是否正確.
拓展延伸:
小張利用上圖中的線段AC及點(diǎn)E,接著構(gòu)造AE=EF=CF,連接AF,得到下圖,試完成以下問題:
①求證△ACF∽△FCE
②求∠A的度數(shù);
③求cos∠A

應(yīng)用遷移:
利用上面的結(jié)論,直接寫出:
①半徑為2的圓內(nèi)接正十邊形的邊長為
5
-1
5
-1

②邊長為2的正五邊形的對角線的長為
5
+1
5
+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•青島模擬)同學(xué)們已經(jīng)認(rèn)識(shí)了很多正多邊形,現(xiàn)以正六邊形為例再介紹與正多邊形相關(guān)的幾個(gè)概念.如正六邊形ABCDEF各邊對稱軸的交點(diǎn)O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問題:正多邊形內(nèi)任意一點(diǎn)到各邊距離之和與這個(gè)正多邊形的半徑R和中心角有什么關(guān)系?
探索發(fā)現(xiàn):
(1)為了解決這個(gè)問題,我們不妨從最簡單的正多邊形--正三角形入手.
如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點(diǎn),P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關(guān)系.
解:設(shè)△ABC的邊長是a,面積為S,顯然S=
1
2
a(h1+h2+h3
O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個(gè)全等的等腰三角形,過點(diǎn)O作OM⊥AB,垂足為M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos
1
2
∠AOB=Rcos
1
2
×120°=Rcos60°,
AM=OAsin∠AOM=Rsin
1
2
∠AOB=Rsin
1
2
×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=
1
2
AB×OM=
1
2
×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
1
2
a(h1+h2+h3)=3R2sin60°cos60°
即:
1
2
×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內(nèi)任意一點(diǎn),P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關(guān)系.
(3)類比上述探索過程,直接填寫結(jié)論
正六邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6=
6Rcos30°
6Rcos30°

正八邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=
8Rcos22.5°
8Rcos22.5°

正n邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和  h1+h2+…+hn=
nRcos
180°
n
nRcos
180°
n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,請求圓內(nèi)接正五邊形的中心角∠AOB=
72
72
°,及∠ACB=
36
36
°,如圖2,請求圓內(nèi)接正六邊形的中心角∠AOB=
60
60
°,及∠ACB=
30
30
°
探究:正n邊形每條邊所對的中心角∠AOB=
360
n
360
n
°,及∠ACB=
180
n
180
n
°(用n表示)

查看答案和解析>>

同步練習(xí)冊答案