【題目】如圖,足球場上守門員在O處開出一高球,球從離地面1米的A處飛出(A在y軸上),運動員乙在距O點6米的B處發(fā)現(xiàn)球在自己頭的正上方達到最高點M,距地面約4米高,球落地后又一次彈起,據(jù)試驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.
(1)求足球開始飛出到第一次落地時,該拋物線的表達式;
(2)足球第一次落地點C距守門員多少米?(取)
(3)運動員乙要搶到足球第二個落點D,他應再向前跑多少米?(取)
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,⊙O的半徑為1,A,B為⊙O外兩點,AB=1.給出如下定義:平移線段AB,得到⊙O的弦
(
分別為點A,B的對應點),線段
長度的最小值稱為線段AB到⊙O的“平移距離”.
(1)如圖,平移線段AB到⊙O的長度為1的弦和
,則這兩條弦的位置關系是 ;在點
中,連接點A與點 的線段的長度等于線段AB到⊙O的“平移距離”;
(2)若點A,B都在直線上,記線段AB到⊙O的“平移距離”為
,求
的最小值;
(3)若點A的坐標為,記線段AB到⊙O的“平移距離”為
,直接寫出
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了“創(chuàng)建文明城市,建設美麗家園”,我市某社區(qū)將轄區(qū)內(nèi)的一塊面積為1000m2的空地進行綠化,一部分種草,剩余部分栽花,設種草部分的面積為(m2),種草所需費用
1(元)與
(m2)的函數(shù)關系式為
,其圖象如圖所示:栽花所需費用
2(元)與x(m2)的函數(shù)關系式為
2=﹣0.01
2﹣20
+30000(0≤
≤1000).
(1)請直接寫出k1、k2和b的值;
(2)設這塊1000m2空地的綠化總費用為W(元),請利用W與的函數(shù)關系式,求出綠化總費用W的最大值;
(3)若種草部分的面積不少于700m2,栽花部分的面積不少于100m2,請求出綠化總費用W的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年史上最長的寒假結束后,學生復學,某學校為了增強學生體質(zhì),鼓勵學生在不聚集的情況下加強體育鍛煉,決定讓各班購買跳繩和毽子作為活動器材.已知購買根跳繩和
個毽子共需
元;購買
根跳繩和
個毽子共需
元.
(1)求購買一根跳繩和一個毽子分別需要多少元;
(2)某班需要購買跳繩和毽子的總數(shù)量是,且購買的總費用不能超過
元;若要求購買跳繩的數(shù)量多于
根,通過計算說明共有哪幾種購買跳繩的方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩列火車分別從A、B兩城同時勻速駛出,甲車開往B城,乙車開往A城.由于墨跡遮蓋,圖中提供的是兩車距B城的路程S甲(千米)、S乙(千米)與行駛時間t(時)的函數(shù)圖象的一部分.
(1)分別求出S甲、S乙與t的函數(shù)關系式(不必寫出t的取值范圍);
(2)求A、B兩城之間的距離,及t為何值時兩車相遇;
(3)當兩車相距300千米時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是△ABC內(nèi)一點,BD⊥CD,E、F、G、H分別是邊AB、BD、CD、AC的中點.若AD=10,BD=8,CD=6,則四邊形EFGH的周長是( 。
A.24B.20C.12D.10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,
.點
從點
出發(fā),沿
以每秒
個單位的速度運動.點
從點
出發(fā),沿
以每秒
個單位的速度運動,點
到達點
時,
兩點同時停止運動.點
不與點
重合時,以為
鄰邊作
.設點
的運動時間為
秒.
(1)用含的代數(shù)式表示
的長;
(2)當點落在邊
上時,求
的值;
(3)當點在
邊上時,設
與
重疊部分圖形面積為
求
與
之間的函數(shù)關系式.
(4)連結,當射線
平分
面積時,直接寫出
的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某球室有三種品牌的個乒乓球,價格是7,8,9(單位:元)三種.從中隨機拿出一個球,已知
(一次拿到
元球)
.
(1)求這個球價格的眾數(shù);
(2)若甲組已拿走一個元球訓練,乙組準備從剩余
個球中隨機拿一個訓練.
①所剩的個球價格的中位數(shù)與原來
個球價格的中位數(shù)是否相同?并簡要說明理由;
②乙組先隨機拿出一個球后放回,之后又隨機拿一個,用列表法(如圖)求乙組兩次都拿到8元球的概率.
又拿 先拿 | |||
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,點C為圓上一點,延長AB到點D,使CD=CA,且.
(1)求證:是⊙O的切線.
(2)分別過A、B兩點作直線CD的垂線,垂足分別為E、F兩點,過C點作AB的垂線,垂足為點G.求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com