
如圖,已知拋物線y=(
sin45°)x
2-2x+n過(guò)原點(diǎn)O和x軸上另一點(diǎn)C,它的頂點(diǎn)為B,四邊形AOBC是菱形,動(dòng)點(diǎn)P、Q同時(shí)從O點(diǎn)出發(fā),P沿折線OACB運(yùn)動(dòng),Q沿折線OBCA運(yùn)動(dòng).
(1)求出點(diǎn)A、點(diǎn)B的坐標(biāo),并求出菱形AOBC的邊長(zhǎng);
(2)若點(diǎn)Q的運(yùn)動(dòng)速度是點(diǎn)P運(yùn)動(dòng)速度的3倍,點(diǎn)Q第一次運(yùn)動(dòng)到BC上,連接PQ交AB于點(diǎn)R,當(dāng)AR=3
時(shí),求直線PQ的解析式;
(3)若點(diǎn)P的運(yùn)動(dòng)速度是每秒2個(gè)單位長(zhǎng),點(diǎn)Q的運(yùn)動(dòng)速度是每秒3個(gè)單位長(zhǎng),運(yùn)動(dòng)到第一次相遇時(shí)停止.設(shè)△OPQ的面積為S,運(yùn)動(dòng)的時(shí)間為t,求這個(gè)運(yùn)動(dòng)過(guò)程中S與t之間的函數(shù)關(guān)系式,并寫(xiě)出當(dāng)t為何值時(shí),△OPQ的面積最大.